

The European Union – Uzbekistan Sustainable Energy Days

International Conference Energy Efficiency in Uzbekistan: prospects and challenges Radisson Blu Hotel, Tashkent, 27 June 2023

Energy Efficiency indicators

Rocco De Miglio, Expert in energy modelling, SECCA

intec

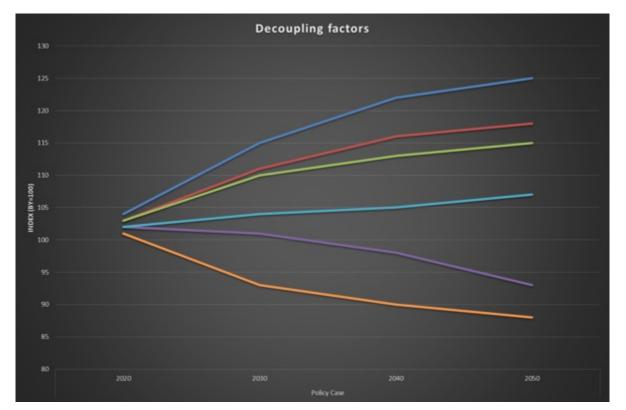
Defining Energy Efficiency Improvements - Indicators

Consume LESS (-) energy to provide SAME (=) service

Consume SAME (=) energy to provide MORE (+) service

Consume LESS (-) energy because of CHANGE (≠) in service

Consume LESS (-) energy and provide LESS (-) service


Are all the above energy efficiency improvements?

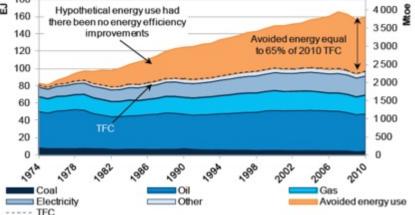
Generic energy efficiency indicator: $\frac{Energy Consumption (t)}{Activity (t)}$

Generic energy efficiency indicator: *Energy consumption* (x,t) – *Energy consumption* (B,t) "Decoupling" is when two variables stop moving together:

- the correlation between them remains positive (relative)
- the correlation between them becomes zero, or negative (absolute)

EE1st at the EU level

Article 2(18) of the Regulation on the Governance of the Energy Union and Climate Action

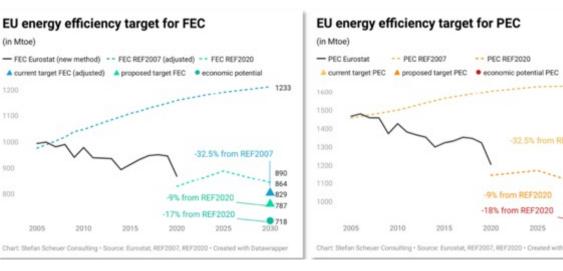

EE1st, as a horizontal "**guiding principle**" of the European climate and energy governance and beyond, should ensure, while taking full consideration of security of supply and market integration, that <u>only the energy **needed**</u> is produced and that investments in stranded assets are avoided in the pathway to achieve the climate goals.

Member States are required to take into account the principle in the integrated National Energy and Climate Plans (NECPs).

The principle aims to treat energy efficiency as the "**first fuel**", that is a source of energy in its own right "save before you build/produce"

The EE1st principle implies adopting a takes into account the <u>overall</u> <u>efficiency of the "integrated energy system" (holistic)</u> and promotes the most efficient solutions for climate neutrality across the <u>value chain</u> (from energy production, network transport to final energy consumption) so that efficiencies are achieved both in primary and final energy consumption.

This includes giving **priority to demand-side** solutions whenever they are more cost-effective than investments in energy infrastructures.


Overall energy efficiency target – Revision of the EED - EC

The EU has set ambitious energy efficiency targets for 2020 and 2030 to reduce primary and final energy consumption as part of its 2050 decarbonisation objectives.

Initial (2018): headline EU energy efficiency target for 2030 of at least 32.5% (compared to projections of the expected energy use in 2030). 32.5% target translates into a final energy consumption of 956 Mtoe and/or primary energy consumption of 1273 Mtoe in the EU by 2030.

	Modelling analysis for the EED recast	New modelling analysis	
	Full Package Scenario 9%EE/40%RES	REPowerEU 13%EE/45%RES	REPowerEU 19%EE/45%RES
Energy consumption			
EU FEC target (wrt. REF2020 scenario)	9%	13%	19%
Final energy consumption (Mtoe)	787	751	701
EU PEC target (wrt. REF2020 scenario)	8%	10%	13%
Primary energy consumption (Mtoe)	1,033	1,006	979

More recent (2022, in the context of the REPowerEU plan)

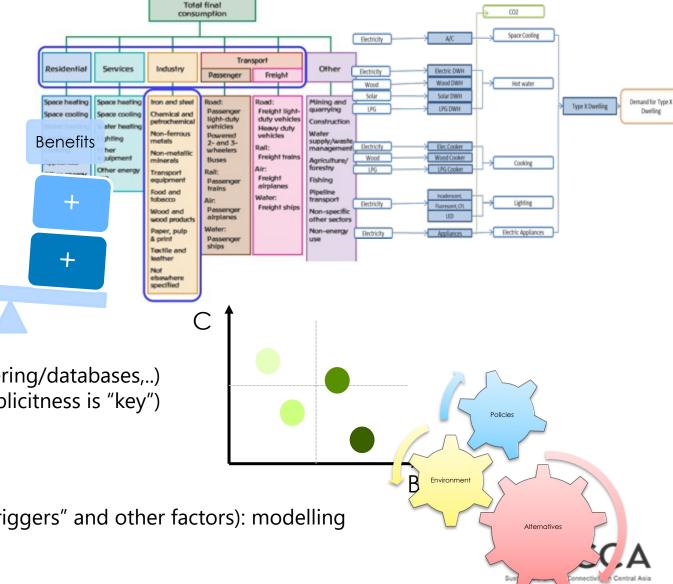
Model-based analyses

Target values: "absolute numbers"

Understanding energy efficiency – Indicative steps

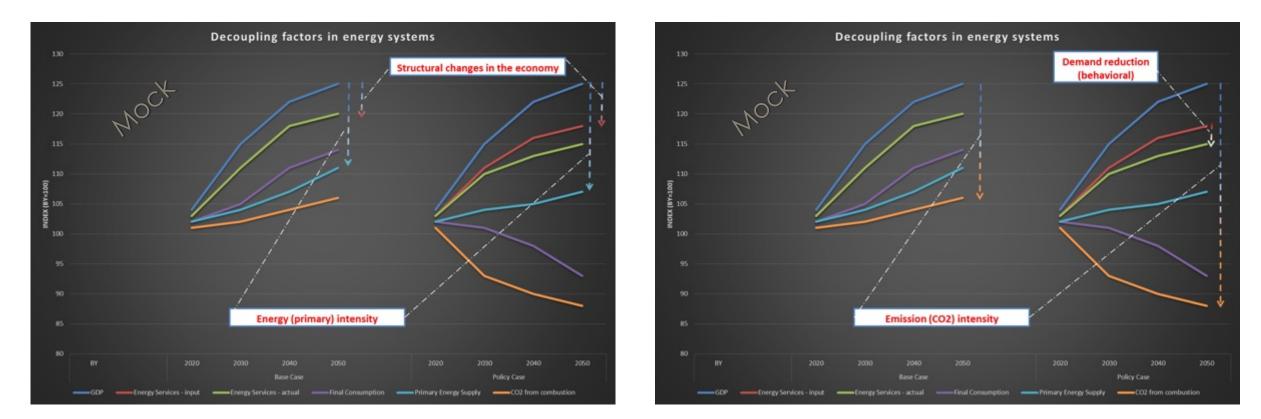
Cost

+


- Understand how energy is used across system/sectors Need end-use information beyond the energy balance

- Define evaluation methodology/rationale

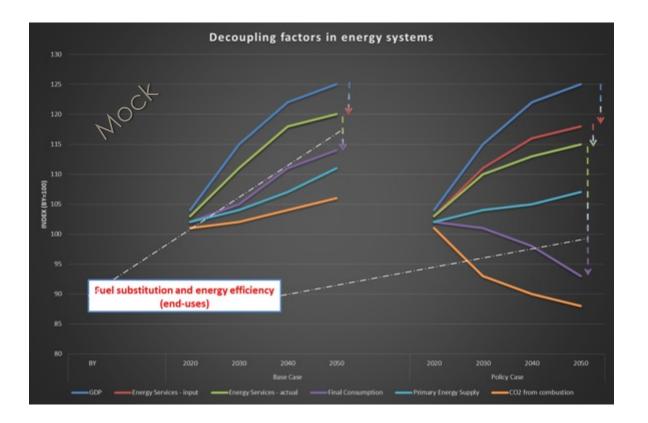
Information collection (statistics/surveys/metering/databases,..)
Select and assess alternatives (technology explicitness is "key")


- Explore and project energy variables (EE "triggers" and other factors): modelling

Funded by the European Union

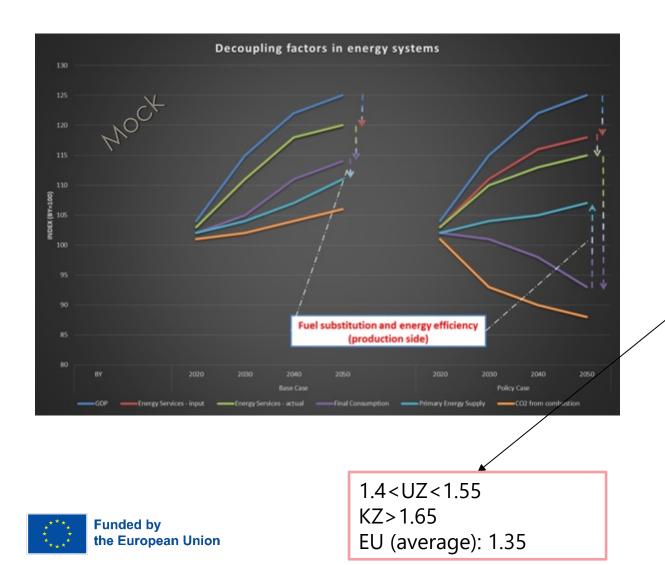
Unveiling and understanding energy efficiency indicators

The importance of disentangling "efficiency improvements" from "structural changes" of the economy and behavioural changes



Uzbekistan's economy and population is expected to grow at high rates of over 4% and 1.5%, respectively, Unmet demand is an issue!

Unveiling and understanding energy efficiency indicators


Examples:

	km)
Energy use for	Energy Intensity
Tertiary Space	Freights Transport
Heating (per sqm)	(per t-km)
Energy use for	Energy use for
Residential Lighting	Cement production
(per dwelling)	(toe/t)
Energy use for	Energy use for
Public Lighting (per	Iron&Steel
number)	production (toe/t)
	Tertiary Space Heating (per sqm) Energy use for Residential Lighting (per dwelling) Energy use for Public Lighting (per

Sustainable Energy Connectivity in Central Asia

Unveiling and understanding energy efficiency indicators

Examples:

Primary Energy Supply per Inhabitant (toe/capita)	Efficiency of Thermal Electricity Generation	CO2 emissions from the power sector per unit of electricity produced (kgrCO2/kWh)
Primary Energy Intensity (toe/k\$)	Electricity transmission and distribution efficiency	CO2 Emissions Intensity per unit of Primary Energy Supply (kg CO2 from Energy Sources / \$ GDP)
Primary Energy over Final Energy (toe/toe) Best = 1	District Heat distribution efficiency	Per value added carbon intensity (kgCO2/\$)
Electric vs bio- fuelled vehicles (over the chain)	Average Capacity Factor of Conventional Power Plants	H2 vs electricity in industry (over the chain)
	ors need to be carefull s can be misleading!	y interpreted! SECCA Sustainable Energy Connectivity in Central Asia

References

Energy efficiency indicators

Database documentation

December 2021 edition

lea	Energy Efficiency Indicators Template country name	
COUNTRY DATA SECTION (to b	e reviewed and undeted)	
MACRO ECONOMIC DATA		
	Macro economic and activity data	
COMMODITIES	Production outputs from selected energy-consuming industries	
SERVICES	Energy consumption by ISIC categories	
RESIDENTIAL	Energy consumption by end-uses in the services sector Household energy consumption by end-uses and selected appliances data	
TRANSPORT	Energy and activity data for passenger and freight transport	$\cap \cap$
EA DATA and AGGREGATE IND	ICATORS	Alleviation of
ELECTRICITY GENERATION	Electricity generation from combustible fuels and efficiencies	GHG savings energy poverty
BASIC INDICATORS	Predetermined set of aggregate energy and activity indicators	Improved
SUPPORT TOOLS		(energy and resource)
USER REMARKS	To incorporate comments associated to the data from the individual sheets	management
DATA COVERAGE	Generates a graphical summary of data coverage (completed vs. expected)	
SINGLE INDICATOR GRAPHS	To generate a graph for one energy indicator	
MULTIPLE INDICATORS GRAPHS	To generate a graph comparing trends from multiple indicators	Reduced air Environmental
CONSISTENCY CHECKS	To run the integrated consistency checks	multution
		Soc
MAIN MENU		

receipts)

Increased

industrial

productivity

Increased

property/asset

value

lea

https://iea.blob.core.windows.net/assets/6d9daa77-45f0-41c9-978bc23a3759b073/Efficiencyindicators_Documentation_December2021.pdf

Source: European Commission based on Odyssee-Mure

Stimualation of

employment

Economic

Economic

growth

Improved health

Increased

energy security

Increased disposable income (lower energy bill)

THANK YOU!

Eng. Rocco De Miglio Energy systems modeller and analyst

