

The European Union – Uzbekistan Sustainable Energy Days

International Conference Energy Efficiency in Uzbekistan: prospects and challenges Radisson Blu Hotel, Tashkent, 27 June 2023

Long-term strategy for renovation of the building stock – aspects of data collection (experience of Lithuania)

Andrius Balsys,

Senior Consultant, Vilnius economics

Q: Where do those numbers come from?

€ billion								
Total investment cost	36,0	Cost for 37 renovation packages (RPs)						
Energy savings	18,0	(37 RPs x 100 building typologies)						
Reduction in CO2 emissions	3,8							
Increase in property value	4,5	Property market research						
GDP increase	19,1	Copenhagen economics study (adopted to local specifics)						
Health and well-being improvement	12,2	BPIE study (adopted to local specifics)						
Other	1,3	Mix of studies & local research						
Total benefits	59,0							

Q: Where do those numbers come from?

€ billion							
Total investment cost	36,0	Cost for 37 renovation packages (RPs)					
Energy savings	18,0	(37 RPs x 100 building typologies)					
Reduction in CO2 emissions	3,8						
Increase in property value	4,5	Property market research					
GDP increase	19,1	Copenhagen economics study (adopted to local specifics)					
Health and well-being improvement	12,2	BPIE study (adopted to local specifics)					
Other	1,3	Mix of studies & local research					
Total benefits	59,0						

Basic formula for energy savings calculation

Energy savings

Estimated 2050 consumption without renovation

Estimated 2050 consumption with renovation

Data development model to estimate energy savings

Q1. Building stock structure?	Q2. Actual energy consumption?	Q3. How to get 85%?	Estimated current consumption	Estimated savings changes	Estimated future consumption
Private houses (EPC A)	Option A:	4 3 T\\/h		3 7 T\\/h	
Private houses (EPC B)	2470	Extrapolate 29%	ate 29%	Savings from Renovation packages (51%)	5,7 1 7 711
Multi-Ap (EPC A)	659/	Option B: Apply standard EPC ratios	8,9 TWh		5,3 TWh
Multi-Ap (EPC B)	ti-Ap C B)				
Non-residential (EPC A)	110/				
Non-residential (EPC A)	11%	Option C:	4,3 I VVN	'Savings' from external factors (9%)	2,9 I VVN
Total 100 categories	Total 29%	Mix of A & B	Total = 2020 EB		Total = 2050 EB

Sustainable Energy Connectivity in Central Asia

Lessons learned in LTRS data collection

- LTRS is mostly about energy for heating & cooling
- Actual data is available for centralized heating & cooling only
- More developed centralized heating (cooling) = more actual data
- Industrial buildings ► separate story (case by case)
- Hence, exercise is much more data generation (creation) than data collection

Generated data form a basis for renovation incentives (subsidies): wrong number - no interest in renovation

