

Implemented by: **giz** Exclusive Desclosure to Internationale Descenterior (192) deal

Accounting for energy in water resources planning: WEFE Nexus, water allocation and irrigation efficient technologies

Integrated Rural Development Project / TRIGGER

Green Diplomacy Week – a global just energy transition

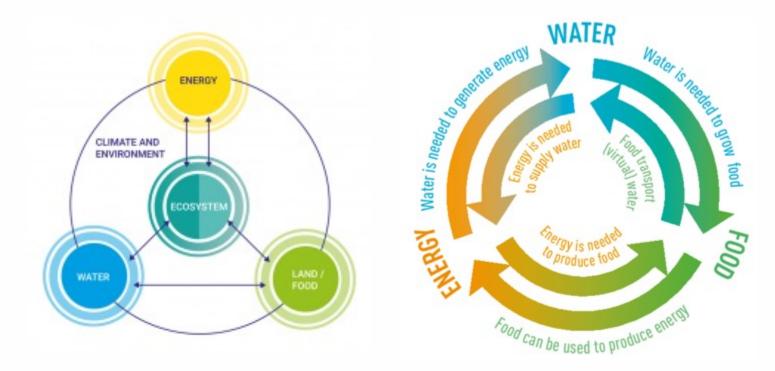
October 25th, 2023

Background

Project name: Integrated Rural Development Project / TRIGGER

Implementation period: January 2021 - December 2024

Budget: 29 500 000 EUR


Funder: European Union and BMZ

Key state partners: Ministry of Energy and Water Resources, Ministry of Agriculture, Committee for Environmental Protection, Ministry of Economic Development and Trade

Area: Zarafshon river basin and national level

Water-Energy-Food-Environment Nexus

Decisions in different sectors of development are often taken without considering the impact they may have on water quantity and quality, and on other sectors

Transboundary Nexus Assessment (TBNA) Methodology (UNECE) and The Water-Energy-Food Nexus (Source: UN-Water, 2013)

UN 2023 Water Conference – Adopting the WEFE Nexus for a water-wise energy transition

COP27 – Nexus solutions for climate-resilient water, energy, food and environment security

Provided technical support to the Ministry of Energy and Water Resources, who is leading discussions on WEFE Nexus at international level

Technical Taskforce for Tajikistan Water Sector Reform

Technical Taskforce for Tajikistan Water Sector Reform

Transboundary Nexus Assessment Methodology from UNECE

Supporting stakeholder engagement through organizational development support to the River Basin Organization and River Basin Council in Zarafshon river basin

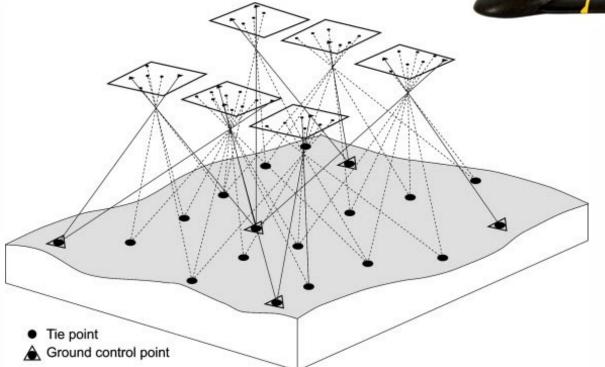
10/28/23

Water allocation for sectoral use in Zarafshon river basin

- Where does the water come from?
- How does it bcome available to the user across time and space?

Average annual recipitation (mm) 202 - 250 251 - 300301 - 350 51.400 Average annua 401 - 450 Agriculture precipitation lands (ha) 151 - 500 (mm) 201-250 2549.61 251-300 301-350 2626,72 351-400 6626,17 851.700 401-450 2014,00 451-500 558,16 701 - 750 501-550 98,40 751 - 800 551-600 66,71 801 - 856 601-650 13,70

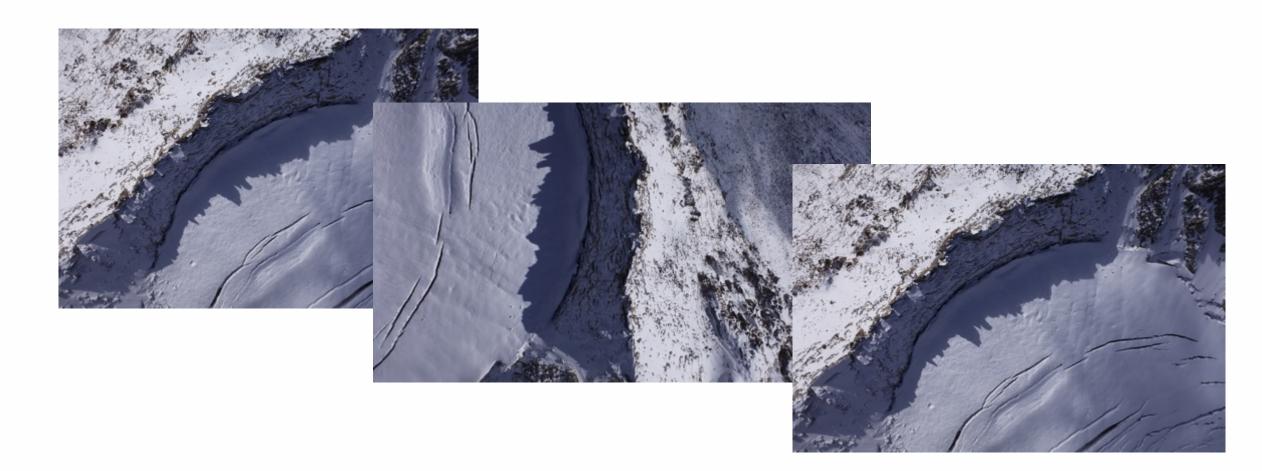
Map of precipitation and agriculture land in Zarafshon


66% of agriculture land is located in areas that receive less than 350 mm of precipitation on average annually

🖉 🤉 💼 🗢 🛈 🖻 …

Glacier and seasonal snow monitoring for glaciohydrological and water allocation modelling

Monitoring the cryosphere (glaciers and snow) with drone technology to know when water will become available at different time scales



Glacier expedition in Zarafshon river basin (01st - 03rd October, 2023)

Ready

Model Ortho Perspective 30°

Edit View Workflow Model Photo Ortho Tools Help

| 圖||〃 ♡|| ▶ □ = ■ = ④ = ヘ = 〃 ヘ > / ○ ○ ○ ☆ は = 田 = 単 = ◇ = ≫ 図||② = ◎ = 県 = 三 = ♥ ┣ □ = ⇒

D: 12:0071_0011_0026 D: 12:00871_0011_0024_12:00871_0011_0027 D: 12:00871_0011_0024_12:00871_0011_0027 D: 12:00871_0011_0022;2:00871_0011_002712:00871_0011_0054 D: 12:00871_0011_0023 D: 12:00871_0011_0033 D: 12:00871_0011_0052

1871_0011_0063

IX-12-80871_0011_00

IX-12-80871_0011_0055

IX-12-80871_0011_0056 IX-12-80871_0011_0092-80671_0011_0064

TX-12-80871_0011_0060 TX_P2-12-80871_0016082 TX-12-80871_0011_0085 TX-12-80871_0011_09612-80871_0011_0080 TX-12-80871_0011_0085 TX-12-80871_0011_0059

DX-12-80871_0011_0058 DX-12-80871_0011_0059 DX-12-80871_0011_0083

De12-80871_0011_0052 De12-80871_0011_0052 De12-80871_0011_0078

IX-12-80871_0011_0077

_IX-12-80871_0011_0076

0011 2005 0014 20299871_0011_0032_1X-12 80871_0011_0051

71 0016410040871_0011_0033 DX-12-80871_0011_0050

1X-12-80871_0011_00081X-12-80871_0011_0034 __IX-12-80871_0011_0049

12-80871_0011_0066

DX-12-80871_0011_0067 DX-12-80871_0011_0074

DX 12 80871_0011_0071

IX-12-80871_0011_0070

IX-12-80871_0011_0072

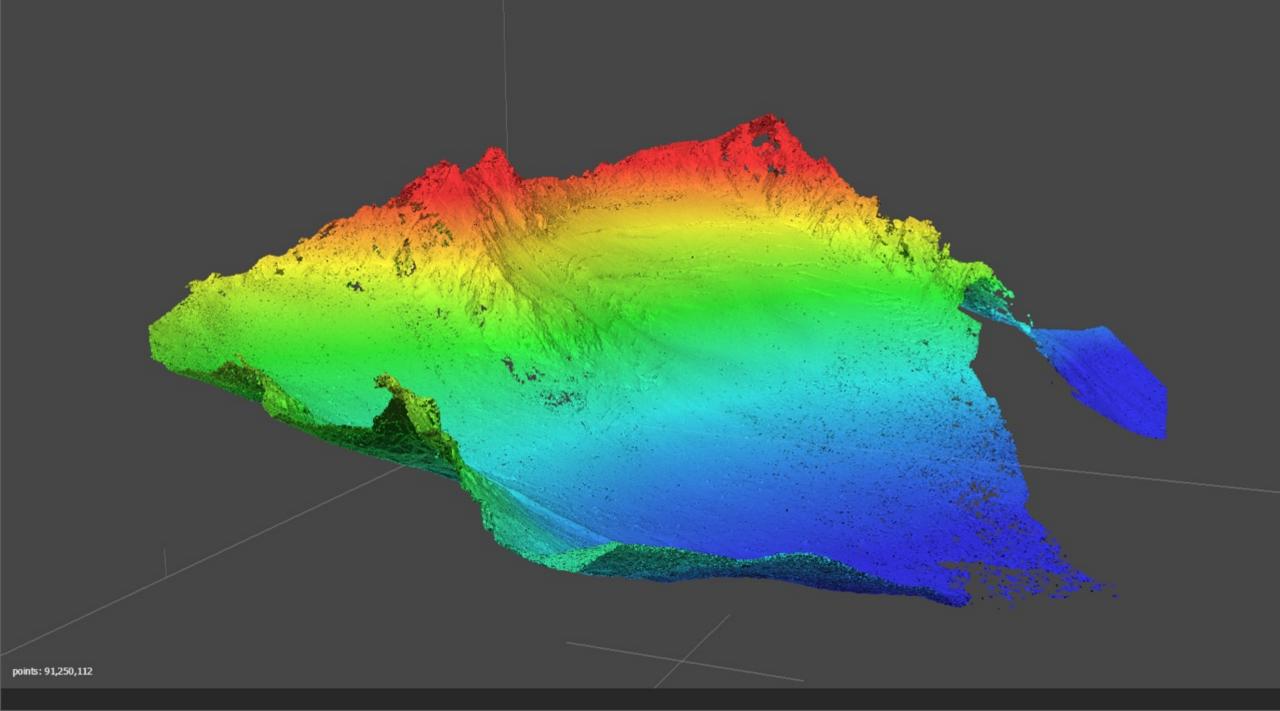
IX-12-80871_0011_0073

1X-12-8087120897608914-0986871_0011_0035 DX-12-80871_0011_0048

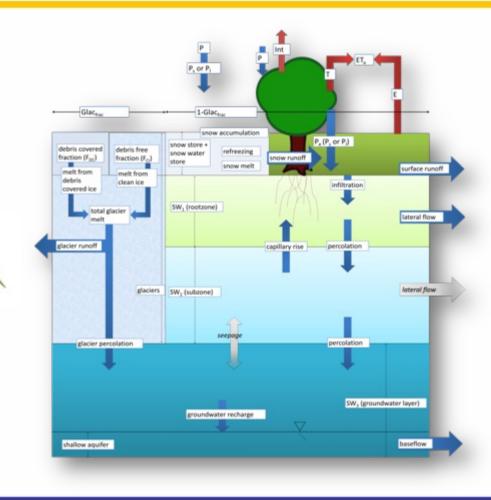
IX-12-80871_2688729068112002440871_0011_0036 D6-12-80871_0011_0047 DX-12-80871_08182490611_0045-80871_0011_0037 DX-12-80871_0011_0046 25112-818701-9011_0014

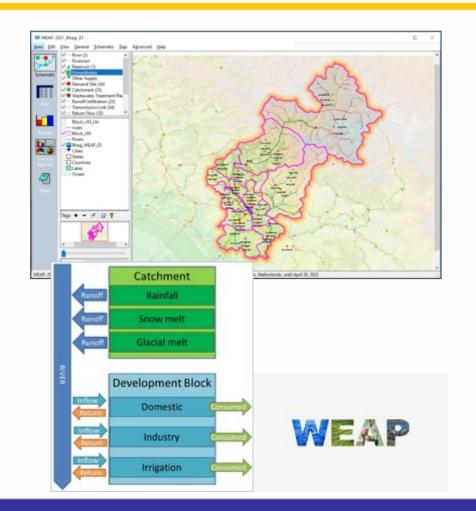
IX-12-80871_0011_0068

IX-12-80871_0011_0069


DC-12-80871_0011_0014 DC-12-80871_0011_0012______TX-12-80871_0011_0038______TX-12-80871_0011_0045

DX-12-80871_0011_0013_1X-12-80871_0011_0039_DX-12-80871_0011_0044


IX-12-80671_0011_0040 IX-12-80671_0011_0043 1X-12-80871_0011_0042


IX-12-80871_0011_0041

Snap: Axis, 3D

The role of **technology** to trigger **partnership and cooperation** among local partners to improve **water allocation and planning**

MINISTRY OF ENERGY AND WATER RESOURCES OF THE REPUBLIC OF TAJIKISTAN

Center for Research of Glaciers of the National Academy of Sciences of Tajikistan

(built in capacity on glacier and snow monitoring and translating it into water supply)

Institute of Water Problems, Hydropower and Ecology of the National Academy of Sciences of Tajikistan

(built in capacity on water allocation and hydrological modelling with WEAP)

Shaping partnerships at multiple levels, including decision makers and technical staff



Zarafshon River Basin Management Plan

Book 1. Characterization of river basin

Book 2. Key challenges for water resources management

Book 3. Targets and indicators

Book 4. Water management balance and water allocation

Book 5. Water extraction limits

Book 6. Program of measures

Improving access and use of irrigation water for small-scale farmers through irrigation efficient technologies

Case Study 1 – Challenge

- Farmer scheme does not receive sufficient water (water access problem). Loss of 45 fruit trees.
- Water source is 2.3 km away.
- Water source depends on two irrigation water pumps that are currently burnt, due to lack of operation and maintenance
- Farmer fully relies on one source of water (water resilience problem)
- Water demand 6.000m3/ha/year using furrow irrigation
- Farmer is not willing to pay for water nor for energy because farmer does not receive water from the central irrigation system

Case Study 1 – Solution

- On-site water storage, pump and drip irrigation.
- Farmer is able to provide water twice a week directly from the river, increasing quantity and quality of yield.
- Water is 300 meters away.
- Farmer manages the water supply according to crop and soil requirements directly from storage fed by mountain river water
- Farmer has access now to a second water source which due to proximity can be fixed if needed.
- Water demand 4.200m3/ha/year
- Water requirements reduced by 30%
- Farmer is willing to pay a higher energy bill in exchange of the connection to the electricity line that will bring water to the farmer's plot

Case Study 2 – Challenge

- New land available for food production
- Farmer plots do not have enough water in the quantity and frequency needed (water access problem).
- Water source is small reservoir storage 1.5 km away and pumps burnt, due to lack of maintenance, rely on even further springs that are drying up.
- Farmer fully relies on one source of water (water resilience problem)
- Water demand 5.000m3/ha/year using furrow irrigation
- Village power line is not enough to meet crop water requirements due to power overload or burnt power lines

Case Study 2 – Solution

- Solar water pump and drip irrigation.
- Farmer is able to provide water twice a week directly from the water reservoir storage.
- Farmer manages the water supply according to crop and soil requirements directly from water storage
- Water demand 3.000m3/ha/year
- Water requirements reduced by 30%
- Farmer is willing to pay for metered water and would save 1920 Kw per year by using the solar water pump

Water, energy and agricultural policy implications

- Improved water productivity raises agricultural production and reduces energy consumption
- Solar renewable energy for food production can reduce pressure on energy production through other renewable (hydropower) and non-renewable sources (coal fire electricity production) delivering adaptation and mitigation benefits
- Adding a second reliable water and electricity source that is closer to the user **improves food security**
- Improved water access can lead to an increase in willingness to pay for the electricity bill
- A **combination** of traditional and decentralized solutions improves the economic resilience of farmers

How can the energy, water, agriculture and climate/environment sector-leading institutions work together to deliver efficient cross-sectoral, adaptation and mitigation solutions for water, energy, food and environment security?

Integrated Rural Development Project / TRIGGER

Wulf-Hendrik Goretzky, Project Director - wulf-hendrik.goretzky@giz.de

Esteban Boj Garcia, Head Water Resources Management - <u>esteban.boj@giz.de</u>

