

Европейский Союз – Туркменистан: Дни устойчивой энергетики

Лекции для профессоров, преподавателей и студентов Государственного энергетического института Туркменистана

Государственный энергетический институт Туркменистана, Мары, 15 декабря 2023 г.

Энергоэффективность в секторе зданий: что стоит за этим понятием?

Каролис Янусевичюс Эксперт по энергоэффективности SECCA

ПОЧЕМУ ПОТРЕБЛЕНИЕ ЭНЕРГИИ ЗДАНИЯМИ ВАЖНО?

90% нашей жизни мы проводим внутри зданий

Комфорт внутри здания влияет на производительность труда и здоровье жильцов.

30% мирового потребления энергии приходится на здания

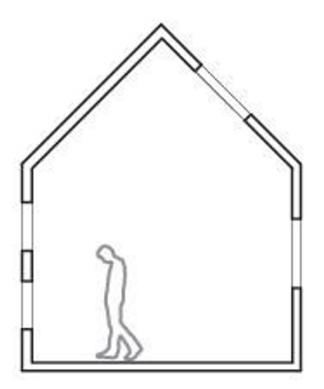
26% мировых выбросов, связанных с энергетикой, приходится на здания

20-50% на столько можно было бы

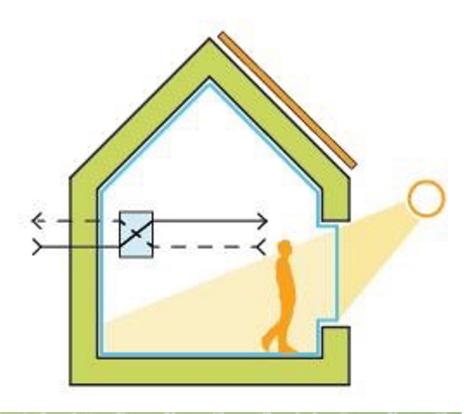
сократить потребление энергии (при условии внедрения передового опыта)

Инвестиции в энергоэффективные здания могут стимулировать экономический рост и создавать рабочие места. Строительство и реновация зданий создают новые возможности трудоустройства.

Использование энергии зданиями — это тема исследований, включающая в себя вопросы инноваций, устойчивости и эффективности для создания более здоровых, экономичных и экологически чистых жилых и рабочих пространств.



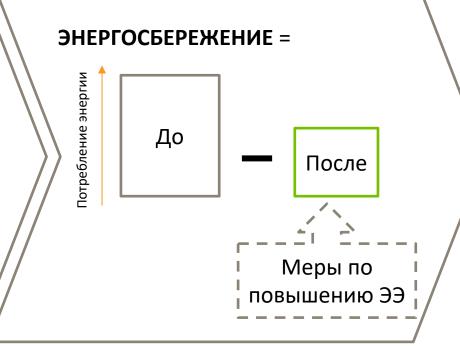
ПЛАН ПРЕЗЕНТАЦИИ


- ① ЭНЕРГОЭФФЕКТИВНОСТЬ ЗДАНИЙ
- ② ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЙ
- 3. ЗДАНИЯ С ПОЧТИ НУЛЕВЫМ ЭНЕРГОПОТРЕБЛЕНИЕМ
 - 4 АНАЛИЗ ЖИЗНЕННОГО ЦИКЛА ЗДАНИЯ
- ⑤ ДЕКАРБОНИЗАЦИЯ ЗДАНИЙ И ЗДАНИЯ С НУЛЕВЫМ УРОВНЕМ ВЫБРОСОВ
 - **б** устойчивые здания

ЭНЕРГОЭФФЕКТИВНОСТЬ ЗДАНИЙ

ЭНЕРГОЭФФЕКТИВНОСТЬ КАК ПОКАЗАТЕЛЬ ДЛЯ ОТСЛЕЖИВАНИЯ УЛУЧШЕНИЙ

ЭНЕРГОЭФФЕКТИВНОСТЬ=


производительность, услуга, товар или энергия

энергия

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ

в результате ряда мер:

- Технологические;
- Поведенческие;
- Экономические аспекты.

Принцип «энергоэффективность прежде всего» - приоритет сокращения количества потребляемой энергии (путем повышения эффективности ее использования и поставок в соответствии с энергетическими целями), перед поиском способов увеличения энергоснабжения.

ОСНОВНЫЕ ПРИНЦИПЫ – СОКРАЩЕНИЕ ПОТРЕБЛЕНИЯ ЭНЕРГИИ ДЛЯ ОБЕСПЕЧЕНИЯ КОМФОРТА В ПОМЕЩЕНИИ

Поскольку здание потребляет энергию для покрытия теплопотерь или удаления излишек тепла – если теплообмен с окружающей средой снижается, энергоэффективность увеличивается.

ПРИТОЧНЫЙ ВОЗДУХ

Funded by

the European Union

Для холодного климата:


- 1. Превосходная изоляция
- 2.Окна с тройным остеклением
- 3.Строительство без тепловых мостов
- 4.Вентиляция с рекуперацией тепла

Для жаркого 🐌 климата:

- 1.Затенение и остекление
- 2. Термальная масса
- 3. Естественная вентиляция
- 4.Светоотражающие внешние поверхности

СИТУАЦИЯ В ГЕРМАНИИ – ЭНЕРГОЭФФЕКТИВНОСТЬ КАК ПРЕДПОСЫЛКА ДЛЯ РЕАЛИЗАЦИИ ДРУГИХ КОНЦЕПЦИЙ

ээ: сложности применения

- **1.Сложность регулирования**: Неэффективная политика и отсутствие единообразия в приоритетах среди стран-членов ЕС не позволяют создать единые стратегии энергоэффективности (<u>Fotiou et al., 2022</u>; <u>von Malmborg, 2022</u>).
- **2.Доступность данных**: Юридические и технические сложности с доступом к данных об энергопотреблении зданий мешают принятию обоснованных решений в области энергоэффективности (Geissler et al., 2019).
- **3.Рыночные барьеры**: Ограниченность развития рынка энергоэффективных технологий и услуг, а также недоверие или непонимание со стороны потребителей (<u>Camarasa, 2019</u>; <u>Labanca et al., 2015</u>).
- **4.Обеспечение качества**: Необходимость улучшения процесса управления качеством в проектах, касающихся повышения энергоэффективности (<u>Kamenders et al., 2018</u>).
- **5.Ограничения, связанные с общественными зданиями**: Проблемы повышения энергоэффективности в общественных зданиях (бюрократические барьеры и потребность в определенной инфраструктуре) (Fogheri, 2015).
- **6. Эффективность управления процессом эксплуатации**: Наличие пробелов в эффективном управлении и эксплуатации строительных систем, согласно данным долгосрочного мониторинга (<u>Motuziene, 2022</u>).
- **7.Поведение потребителей**: Решение проблем, связанных с динамикой рынка и поведением потребителей для раскрытия потенциала энергосбережения в зданиях (<u>Tuominen et al., 2012</u>).

ЭЭ: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Энергоэффективная модернизация**: Изучение устойчивых методов модернизации существующих зданий для повышения энергоэффективности (<u>Sümer Coşkun & Arslan Selçuk, 2022</u>).
- **2.Оптимизация энергоэффективности зданий**: Оценка и повышение энергоэффективности как в новых, так и в существующих зданиях (Yudin et al., 2022).
- **3.Передовые системы для зданий**: Исследование инновационных технологий и систем для повышения энергоэффективности в новых и обновленных зданиях (<u>Gómez Melgar & Andújar Márquez, 2022</u>).
- **4.Энергетическое моделирование в системах HVAC (отопление, вентиляция, кондиционирование воздуха)**: Разработка прогнозных моделей и средств управления для систем HVAC с целью оптимизации использования энергии (<u>Kim et al., 2022</u>).
- **5.Использование удаленного измерения для целей энергоэффективности**: Использование изображений и данных о температуре для оценки энергоэффективности зданий (<u>Benelli, 2023</u>).
- **6.Энергоэффективное строительство**: Проектирование и строительство зданий с комплексными энергоэффективными решениями (Lamb & Pollet, 2020).
- **7.Семантическая совместимость в строительных системах**: Сосредоточение внимания на передовых системах управления и объединения данных для оптимизации энергоэффективности (Benndorf et al., 2018).

ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЯ

ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ

«энергетические показатели здания» - рассчитанное или измеренное количество энергии, необходимое для удовлетворения повседневных нужд, включающих, среди прочего, отопление, охлаждение, вентиляцию, горячее водоснабжение и освещение.

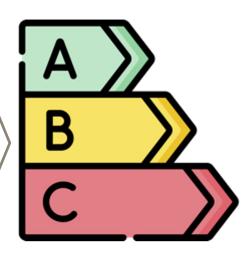
ЭНЕРГЕТИЧЕСКУЮ СЕРТИФИКАЦИЮ СЛЕДУЕТ ПОНИМАТЬ КАК СИСТЕМУ ОЦЕНКИ ЭНЕРГОЭФФЕКТИВНОСТИ ЗДАНИЯ И ПРИСВОЕНИЯ РЕЙТИНГА НА ОСНОВЕ ЭТОЙ ОЦЕНКИ

ЭНЕРГЕТИЧЕСКАЯ СЕРТИФИКАЦИЯ это система присвоения рейтинга*, позволяющая обобщить и отразить уровень энергоэффективности здания в упрощенном виде.

ЭНЕРГЕТИЧЕСКИЙ СЕРТИФИКАТ (EPC) - это документ, отражающий уровень энергоэффективности здания. В нем дается информация об энергопотреблении (рассчитанном или измеренном), а также дополнительная информация, такая как выбросы углекислого газа; документ также содержит рекомендации о том, как можно улучшить энергетические показатели здания.

* Рейтинг – это система оценок, как, например, система оценивания в школе:

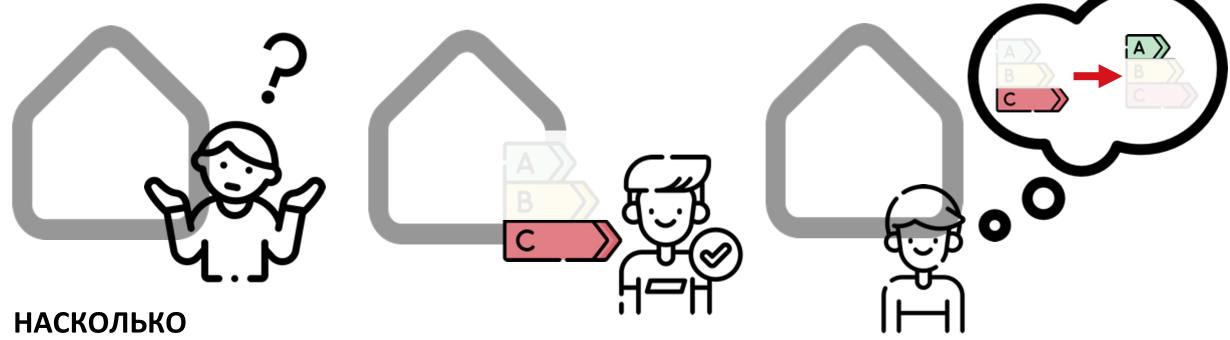
10 (А) – наилучший


• • • •

1/0 (G) – наихудший Для присвоения зданию рейтинга необходимо определить:

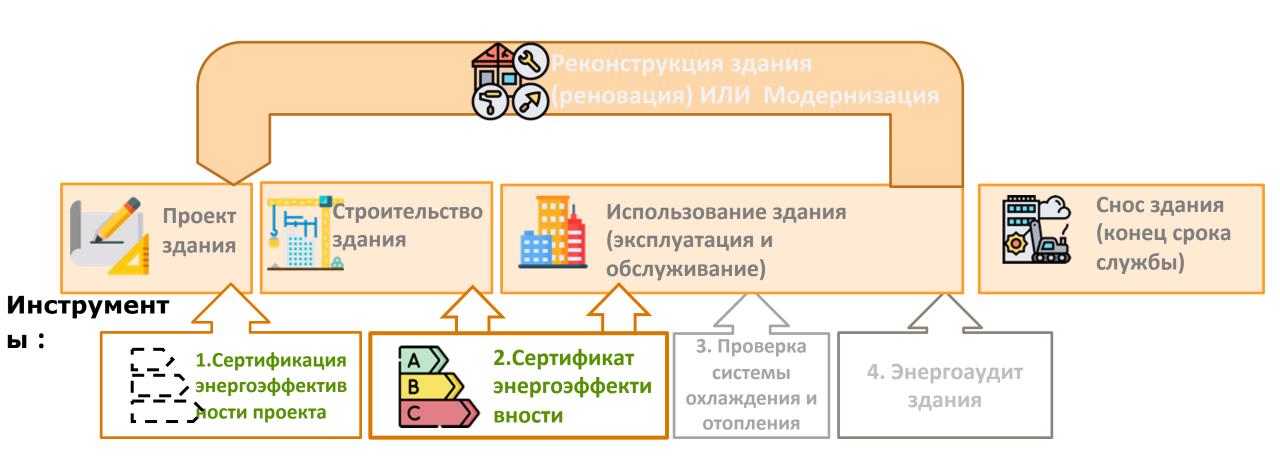
Каким критериям должно соответствовать здание с наивысшим рейтингом?

Каковы минимальные требования приемлемости?


В каком случае присваивается самый низкий рейтинг?

ЭНЕРГЕТИЧЕСКИЕ СЕРТИФИКАТЫ ДАЮТ ПОКУПАТЕЛЯМ И ВЛАДЕЛЬЦАМ ИНФОРМАЦИЮ О СОСТОЯНИИ ЗДАНИЯ, ТЕМ САМЫМ ОБЛЕГЧАЯ ИМ ЖИЗНЬ

Энергетические сертификаты дают клиентам информацию об эффективности здания с точки зрения энергопотребления. Благодаря сертификатам клиенты могут больше узнать о здании и повышать уровень его энергоэффективности, а не просто следовать минимальным стандартам



НАСКОЛЬКО ЭНЕРГОЭФФЕКТИВНО НАШЕ ЗДАНИЕ?

ЭНЕРГЕТИЧЕСКАЯ СЕРТИФИКАЦИЯ ПОМОГАЕТ ЗАДАВАТЬ И КОРРЕКТИРОВАТЬ ХАРАКТЕРИСТИКИ ЗДАНИЯ В ТЕЧЕНИЕ ЕГО ЖИЗНЕННОГО ЦИКЛА

ЭНЕРГЕТИЧЕСКАЯ СЕРТИФИКАЦИЯ ДАЕТ ИНФОРМАЦИЮ О СОСТОЯНИИ НАЦИОНАЛЬНОГО ФОНДА ЗДАНИЙ И ЕГО ЭФФЕКТИВНОСТИ

ФОРМИРОВАНИЕ
ЧЕТКОГО
ПРЕДСТАВЛЕНИЯ О
СИТУАЦИИ В ФОНДЕ
ЗДАНИЙ

Определение приоритетов реновации: определение менее энергоэффективных зданий/территорий, нуждающихся в срочной реновации.

Адаптация региональных стратегий: решение конкретных проблем в области энергоэффективности в различных регионах.

Защита уязвимых потребителей: выявление регионов, подверженных риску энергетической бедности, и разработка мер поддержки.

Разработка стратегии по реновации: прогнозирование будущих потребностей в энергии и определение приоритетности работ по реновации.

Оценка воздействия политики: отслеживание

изменений в рейтингах для оценки эффективности политики.

ПРИМЕР ПРОБЛЕМЫ: РАЗРЫВ МЕЖДУ ОЖИДАЕМЫМ И РЕАЛЬНЫМ УРОВНЕМ ЭНЕРГОЭФФЕКТИВНОСТИ

- Неопределенности в данных и методе
- Неполная информация

rebound effect

- Отклонение между заявленными и фактическими показателями
- Дефекты и проблемы с качеством
- отличаются от ожидаемых
- Ненадлежащее обслуживание

100 -

0 —

calculated

saving

energy

saving

ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЙ: СЛОЖНОСТИ ПРИМЕНЕНИЯ

- **1.Проблемы интеграции**: Трудности интеграции интеллектуальных платформ энергоэффективности (Polychroni et al. (2023))
- **2.Маркировка vs. парадокс эффективности**: Несоответствия между энергетической маркировкой и фактическим уровнем энергоэффективности (<u>Macarulla and Casals (2021)</u>)
- **3.Неправильная система оценки**: Потребность в передовых методах оценки энергоэффективности зданий (Koltsios et al. (2022))
- **4.Влияние дизайна маркировки**: Влияние дизайна энергетической маркировки на эффективность (<u>Fujisawa et al. (2020)</u>).
- **5.Проблемы прозрачности и оптимизации**: Проблемы достижения прозрачности и оптимизации энергетических рейтингов (Nadkarni (2012))

ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЙ: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Направления будущей деятельности в области повышения энергоэффективности**: <u>Hazem Rashed-Ali (2021)</u> исследует новые методы и будущие тенденции в области повышения энергоэффективности.
- **2.Сертификаты повышенной энергоэффективности**: <u>Koltsios et al. (2022)</u> рассматривают разработку рамок нового поколения для сертификации энергоэффективности зданий.
- **3.Региональные тенденции сертификации энергоэффективности**: Samira Akbarova (2018) изучает тенденции сертификации энергоэффективности в Азербайджане и дает региональную информацию.
- **4.Интеллектуальные платформы оценки энергоэффективности**: <u>Polychroni et al. (2023)</u> рассматривают интеллектуальные платформы для более эффективной оценки энергоэффективности зданий.
- **5.Энергетическая маркировка в коммерческих зданиях**: <u>Kelli Soll and John F. Gardner</u> рассматривают проблемы маркировки энергоэффективности, характерные для коммерческого сектора.
- **6.Семантическая совместимость в области энергоэффективности**: Gesa A. Benndorf et al. (2018) рассматривают влияние семантической совместимости на оптимизацию энергоэффективности зданий.
- **7.Установление контрольных значений в области энергоэффективности**: Luming Shang et al. (2023) оценивают как установление контрольных значений в области энергоэффективности и политика раскрытия информации влияют на продаваемость офисных зданий.

ЗДАНИЯ С НУЛЕВЫМ ЭНЕРГОПОТРЕБЛЕНИЕМ

ЗДАНИЯ С ПОЧТИ НУЛЕВЫМ ЭНЕРГОПОТРЕБЛЕНИЕМ (NZEB)

② ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЙ «Здание с почти нулевым энергопотреблением» (NZEB) - здание с высокими энергетическими показателями. Почти нулевой или очень низкий объем необходимой энергии должен быть в значительной степени покрыт за счет энергии из возобновляемых источников, включая энергию из возобновляемых источников, производимую на месте или поблизости.

ПРИНЦИП КОМПЕНСАЦИИ ПОТРЕБНОСТИ ВОЗОБНОВЛЯЕМЫМИ ИСТОЧНИКАМИ ЭНЕРГИИ

Когда энергоэффективность повышается и спрос на энергию снижается, можно добавить возобновляемые источники.

В зависимости от спроса возобновляемые источники энергии могут частично или полностью покрыть его.

Если спрос сведен к минимуму, а производство возобновляемой энергии полностью покрывает его и производит излишек — его можно использовать для других потребностей или продать.

Сложность состоит в необходимости оптимизации решения, чтобы конечный результат был экономически эффективным и оптимальным с точки зрения затрат.

ПРИМЕР ПРОБЛЕМЫ: ПОВЕДЕНИЕ ЖИЛЬЦОВ, АВТОМАТИЗАЦИЯ ЗДАНИЯ И ВОЗДЕЙСТВИЕ УПРАВЛЕНИЯ

NZEB: СЛОЖНОСТИ ПРИМЕНЕНИЯ

- **1.Сложность реновации**: Реновация существующих зданий до стандартов зданий с нулевым энергопотреблением сопряжена с серьезными проблемами, касающимися координации и коммуникации, особенно в различных европейских жилых комплексах (<u>Prieto & Konstantinou, 2023</u>).
- **2.Технологические пробелы и пробелы в навыках**: Переход от традиционных зданий к зданиям с нулевым энергопотреблением требует преодоления технологических барьеров, высоких затрат и нехватки квалифицированных специалистов (<u>Salem & Elwakil, 2023</u>).
- **3.Интеграция солнечной энергии**: Возможность использования солнечной энергии в зданиях с почти нулевым энергопотреблением часто не представляется реальной из-за местных климатических условий, проектных ограничений и проблем интеграции (<u>Но, 2023</u>).
- **4.Эстетические соображения**: Баланс между эффективностью фотоэлектрических систем и эстетической привлекательностью в проектах зданий остается серьезной проблемой (<u>Basher et al., 2023</u>).
- **5.Управление энергопотреблением с помощью Интернета вещей**: Эффективное управление энергопотреблением в подсоединенных зданиях с помощью систем Интернета вещей сопровождается сложностями в области технологий, масштабируемости и надежности (Gao et al., 2022).

NZEB: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Качество воздуха в помещении**: Исследуется риск роста грибков в nZEB, подчеркивается важность поддержания здоровой внутренней среды (<u>Carpino et al., 2023</u>).
- **2. Проект здания с учетом климатических факторов**: Рассматривается проблема оптимизации nZEB в экстремальных климатических условиях, таких как жаркое лето и холодная зима (Wang Suqi et al., 2023).
- **3.Новые технологии и методы**: Библиометрический анализ для выявления новых технологий и методологий в исследованиях ZEB (<u>Jia Wei et al., 2023</u>).
- **4.Анализ жизненного цикла**: Основное внимание уделяется долгосрочной эффективности и устойчивости nZEB с учетом воздействия на жизненный цикл (<u>Di Sun, 2023</u>).
- **5.Интеграция возобновляемых источников энергии**: Исследования подчеркивают важность интеграции систем солнечной энергии для достижения нулевого энергопотребления в зданиях (<u>Kasaeian & Sarrafha, 2021</u>).
- **6.Реальное влияние**: Исследования оценивают фактические затраты на энергию и выбросы углерода в зданиях с нулевым потреблением энергии для оценки их воздействия на окружающую среду (<u>Miranda L. Vinay, 2022</u>).

BUILDING LIFE CYCLE INFORMATION

SUPPLEMENTARY INFORMATION BEYOND THE BUILDING LIFE CYCLE

CONSTRUCTION PRODUCT STAGE **USE STAGE** PROCESS STAGE

A1-3 A4-5

Manufacturing

Transport

Raw material supply

Construction-installation process Transport

B1-7

Maintenance Use

Refurbishment Replacement Repair

Operational energy use

END OF LIFE STAGE

C1-4

De-construction Demolition

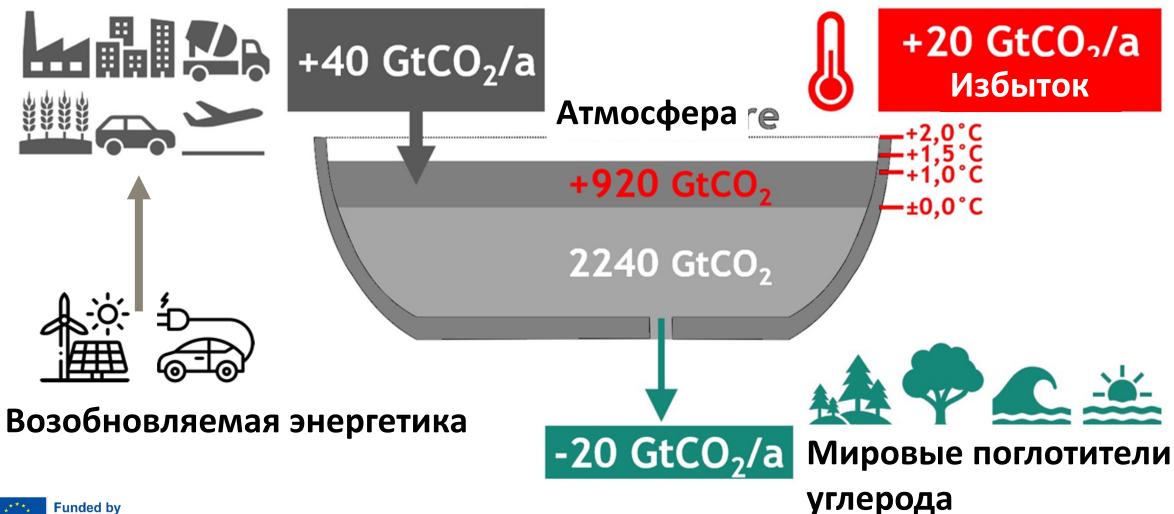
Transport

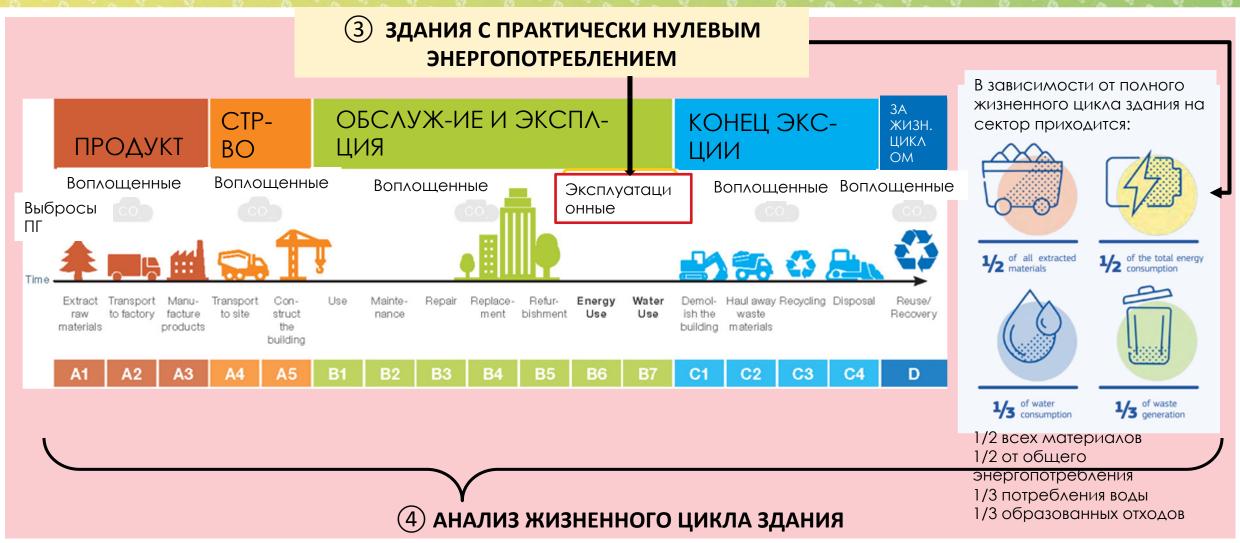
Waste processing Disposal

BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY

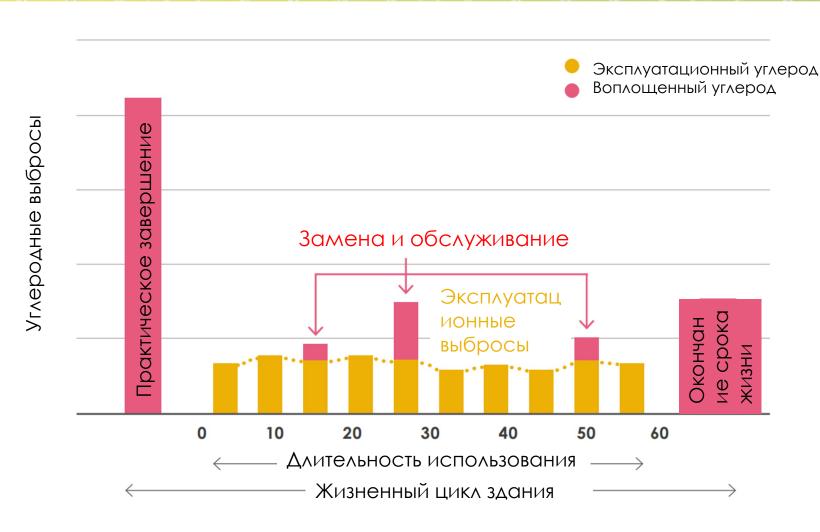
D

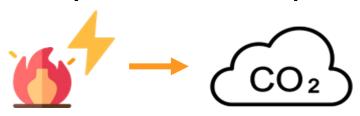
Reuse-Recovery-Recycling potential

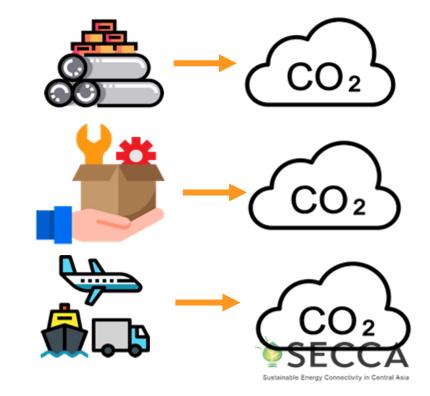

АНАЛИЗ ЖИЗНЕННОГО ЦИКЛА ЗДАНИЯ


МИРОВОЙ УГЛЕРОДНЫЙ БЮДЖЕТ 🛭 МОДЕЛЬ ВАННЫ

Мировые выбросы углерода


АНАЛИЗ ЖИЗНЕННОГО ЦИКЛА ЗДАНИЯ




ВЫБРОСЫ ПРОИЗВОДЯТСЯ НА ВСЕХ ЭТАПАХ ЖИЗНЕННОГО ЦИКЛА ЗДАНИЯ

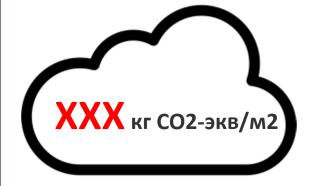
Эксплуатационные выбросы:

Воплощенные выбросы:

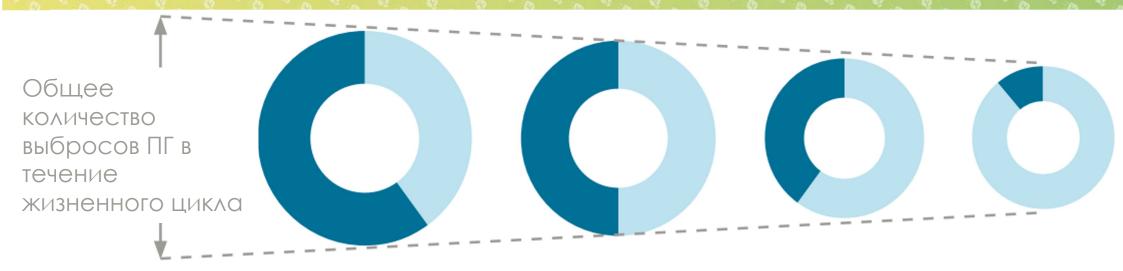
ОЦЕНКА ОБЩЕГО ВОЗДЕЙСТВИЯ НА ПРОТЯЖЕНИИ ВСЕГО ЖИЗНЕННОГО ЦИКЛА РАЗДЕЛЕНА НА 4 ОСНОВНЫХ ЭТАПА:

① ОПРЕДЕЛЕНИЕ ЦЕЛИ И ОБЛАСТИ ПРИМЕНЕНИЯ

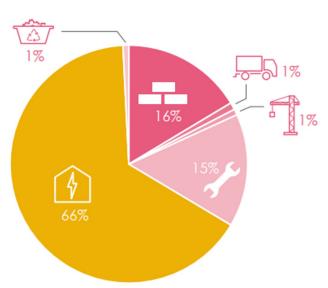
②АНАЛИЗ СОСТОЯНИЯ ЗАПАСОВ

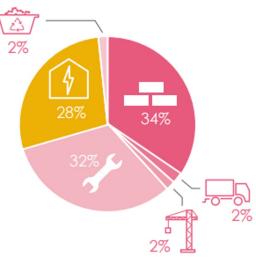


③ ОЦЕНКА ВОЗДЕЙСТВИЯ [Инвент-ция] \mathbf{x} [Возд-вие] = [Итог] Оценка Оценка воздействия Оценка общего количества воздействия окружающую материалов и на среду каждого окружающую процессов материала среду или процесса


4 интерпретация

КОГДА ПОВЫШАЕТСЯ ЭНЕРГОЭФФЕКТИВНОСТЬ, ВОПЛОЩЕННЫЕ ВЫБРОСЫ ЗДАНИЯ СТАНОВЯТСЯ ВАЖНЫМИ




Обслуживание и замена

Эксплуатационное энергопотребление

Утилизация по окончании срока службы

Повышение энергоэффективности снижает воздействие эксплуатационного энергопотребления, но увеличивает выбросы, связанные с материалами

ОЦЕНКА ЖИЗНЕННОГО ЦИКЛА (LCA): СЛОЖНОСТИ ПРИМЕНЕНИЯ

- **1.Сложность интеграции**: Сложности интеграции LCA в системы оценки зданий (<u>Borja Izaola et al.</u> (2022) в исследовании «Устойчивость», в котором рассматриваются проблемы стандартных оценок).
- **2.Потребность в инновационных подходах**: Ограничения существующих методологий LCA и необходимость в новых инструментах рассматриваются в <u>Канадском журнале гражданского</u> строительства (2022).
- **3.Экономико-экологический баланс**: Трудность совмещения экономической жизнеспособности с экологической устойчивостью в LCA, особенно в проектах стальных зданий (<u>Silvia Vela et al. (2022)</u> в исследовании «Устойчивость»).
- **4.Методологические проблемы**: Методологические проблемы, включая качество данных и стандартизацию, влияющие на надежность LCA (<u>Martin N. Nwodo and Chimay J. Anumba (2019)</u> в исследовании «Здания и окружающая среда»).
- **5.3атраты на модернизацию и ее последствия**: Сложность оценки воздействия на окружающую среду и затрат при модернизации зданий, влияющая на решения по модернизации (<u>Carla Rodrigues and Fausto Freire (2021)</u> в исследовании «Устойчивые города и общество»).

ОЦЕНКА ЖИЗНЕННОГО ЦИКЛА: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Энергопотребление на всем жизненном цикле зданий**: Clyde Zhengdao Li et al. (2020) провели комплексный обзор энергопотребления в течение жизненного цикла зданий, подчеркнув растущую важность энергоэффективности и устойчивости при проектировании и эксплуатации зданий.
- **2.Фонды нежилых зданий**: <u>Julian Bischof and Aidan Duffy (2022)</u> сосредоточены на оценке жизненного цикла нежилых зданий, анализе текущих методов моделирования для определения воздействия этих зданий на окружающую среду.
- **3.Динамическая оценка жизненного цикла**: В исследовании, проводимом Shu Su et al. (2021) рассматривается эволюция моделей оценки и динамических переменных для динамического анализа жизненного цикла зданий, и переход к более адаптивным методам оценки.
- **4.Исследования энергопотребления в течение жизненного цикла**: В обзоре, проводимом Xulu Lai et al. (2020) анализируются исследования по энергопотреблению в течение жизненного цикла. Это отражает растущий интерес к пониманию и снижению энергетического следа строительных проектов.
- **5.Установление контрольных показателей для LCA в зданиях**: Yahong Dong et al. (2021) предлагают комплексный анализ для сравнительной оценки жизненного цикла зданий, что указывает на необходимость стандартизации и сопоставимости исследований LCA.

ДЕКАРБОНИЗАЦИЯ ЗДАНИЙ И ЗДАНИЯ С НУЛЕВЫМ УРОВНЕМ ВЫБРОСОВ

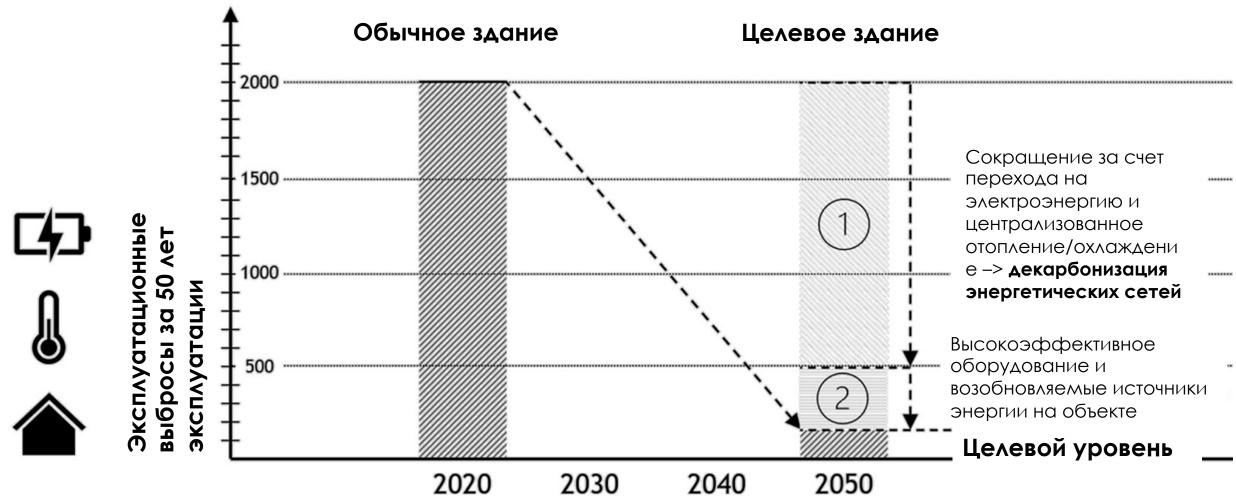
ДЕКАРБОНИЗАЦИЯ ЗДАНИЙ

4 АНАЛИЗ ЖИЗНЕННОГО ЦИКЛА ЗДАНИЯ

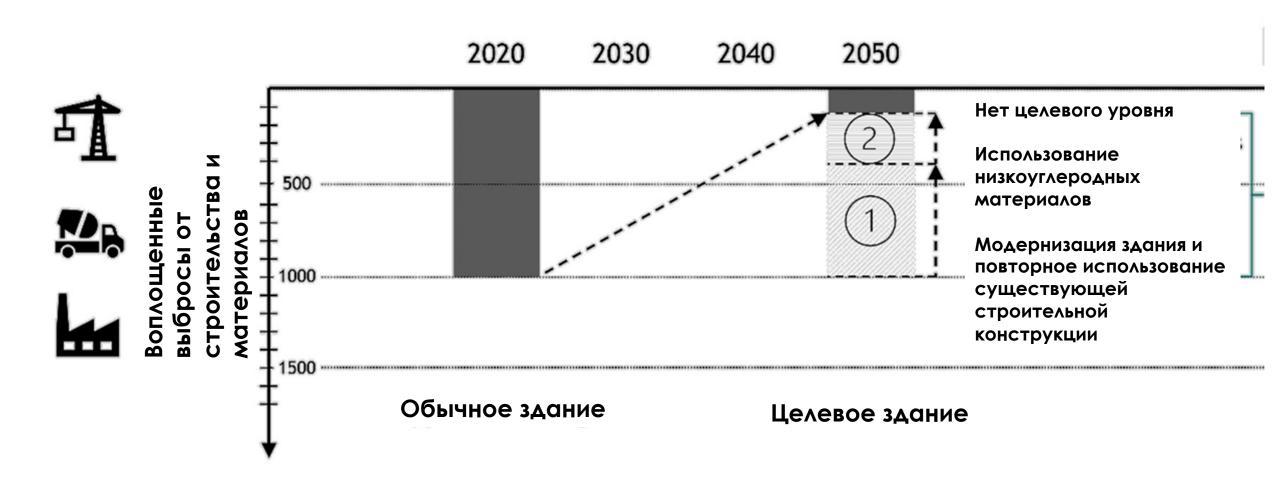
Цель:

Минимизировать влияние здания на изменение климата

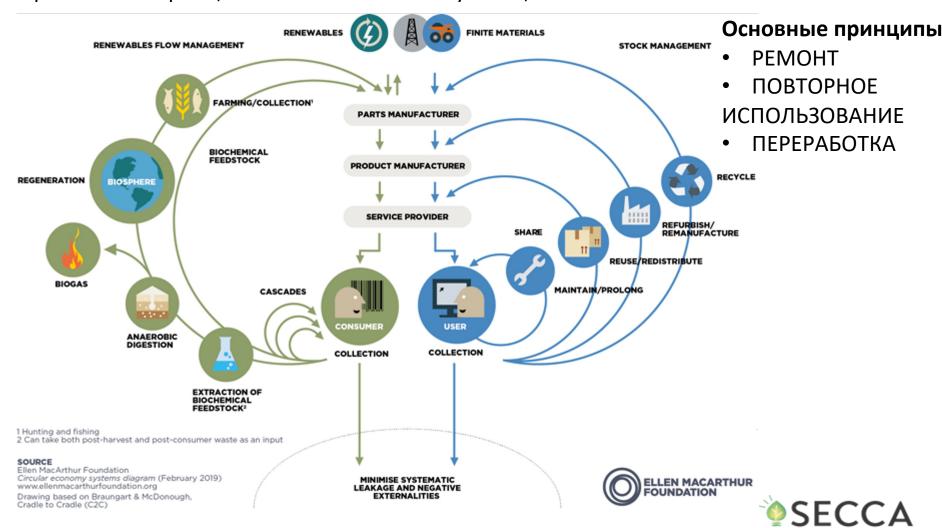
(на протяжении всего жизненного цикла)


?

5 ДЕКАРБОНИЗАЦИЯ ЗДАНИЙ И ЗДАНИЯ С НУЛЕВЫМ УРОВНЕМ ВЫБРОСОВ

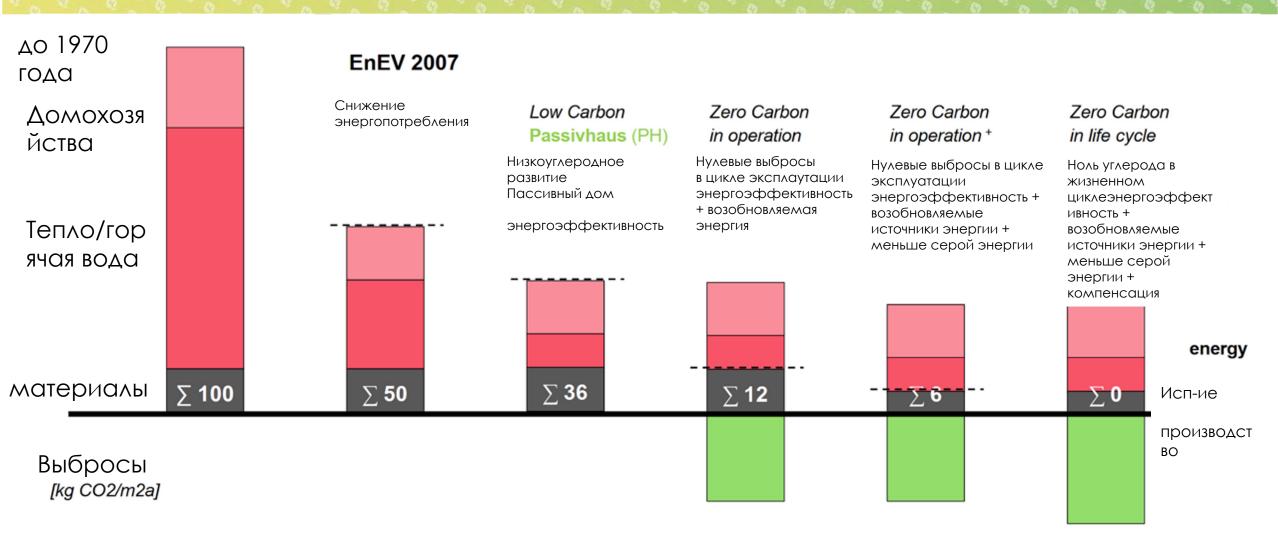

ЭКСПЛУАТАЦИОННЫЕ ВЫБРОСЫ МОЖНО СОКРАТИТЬ ЗА СЧЕТ ДЕКАРБОНИЗАЦИИ СЕТЕЙ И ПОВЫШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ + ИНТЕГРАЦИИ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ

ВОПЛОЩЕННЫЕ ВЫБРОСЫ МОЖНО СОКРАТИТЬ ПУТЕМ ИСПОЛЬЗОВАНИЯ НИЗКОУГЛЕРОДНЫХ МАТЕРИАЛОВ, А ТАКЖЕ ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ И МОДЕРНИЗАЦИИ


КОГДА УПРАВЛЕНИЕ ЖИЗНЕННЫМ ЦИКЛОМ ЗДАНИЯ ВЫХОДИТ ЗА РАМКИ ЭНЕРГОМЕНЕДЖМЕНТА, ОН СТАНОВИТСЯ БОЛЕЕ ВАЖНЫМ

Прикладные стратегии:

- Не стройте ничего
 - Откажитесь от ненужного строительства
- Стройте надолго
 - Увеличение срока использования
 - Долговечность
 - Адаптивность
 - Разборка
- Стройте эффективно
 - Откажитесь от ненужных компонентов
 - Эффективность материалов
- Используйте



Применение принципов экономики замкнутого цикла:

Sustainable Energy Connectivity in Central Asia

СОКРАЩЕНИЕ ВЫБРОСОВ УГЛЕРОДА НА НЕМЕЦКОМ РЫНКЕ

ZE(m)В: СЛОЖНОСТИ ПРИМЕНЕНИЯ

- **1.Принятие надежных решений о модернизации**: Лайнус Уокер и др. (2022) изучают стратегии модернизации для обеспечения декарбонизации по всей Европе, подчеркивая необходимость индивидуальных подходов. <u>Linus Walker et al. (2022)</u>
- **2.Базовый уровень и пути сокращения выбросов парниковых газов**: Мартин Рёк и др. (2022) предоставляют базовые показатели выбросов парниковых газов в течение жизненного цикла зданий в Европе и исследуют различные пути декарбонизации. Martin Röck et al. (2022)
- **3.Устойчивые подходы к более глубокой декарбонизации**: Раджвикрам Мадурай Элаварасан и др. (2022) исследуют устойчивые методы более глубокой декарбонизации в Европе, направленные на достижение климатической нейтральности. <u>Rajvikram Madurai Elavarasan et al. (2022)</u>
- **4.Энергетические услуги в сценарии повышения температуры на 1,5°C**: Антуан Левеск и др. (2021) обсуждают необходимые преобразования спроса и предложения в построении энергетических услуг с целью приведения их в соответствие со сценарием изменения климата в Европе на 1,5°C. <u>Antoine</u> <u>Levesque et al. (2021)</u>
- **5.Строительство зданий с почти нулевым энергопотреблением (NZEBs)**: Делия Д'Агостино и др. (2021) оценивают развитие и влияние NZEB в стратегиях декарбонизации Европы. <u>Delia D'Agostino et al. (2021)</u>

ZE(m)В: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Стратегии управления этапом завершения эксплуатации**: <u>Augustine Blay-Armah et al. (2023)</u> рассматривают стратегии управления компонентами зданий по окончании срока их эксплуатации для смягчения последствий изменения климата.
- **2.Экономика замкнутого цикла и воплощенные выбросы**: <u>Prerana Bhadane and Pooja D. Nemade (2022)</u> оценивают влияние принципов экономики замкнутого цикла на сокращение воплощенных выбросов в устойчивом строительстве.
- **3.Воплощенные выбросы в зданиях**: <u>Thomas Lützkendorf and Maria Balouktsi (2022)</u> предлагают идеи по сокращению воплощенных выбросов углекислого газа в зданиях.
- **4.Базовый уровень и пути декарбонизации воплощенных выбросов парниковых газов**: Marcus Röck et al. (2022) работают над определением базового уровня и путей декарбонизации воплощенных выбросов парниковых газов в европейских зданиях.
- **5.Сокращение воплощенного углерода за счет выбора правильных материалов**: Fiona Cousins et al. (2018) обсуждают потенциал выбора материалов для снижения воплощенного углерода в зданиях.
- **6.Потенциал экономики замкнутого цикла в устойчивых зданиях** : <u>Leonora Charlotte Malabi Eberhardt et al. (2019)</u> изучают потенциал экономики замкнутого цикла в практике устойчивого строительства.
- **7.Стратегии сокращения воплощенного углерода в зданиях** : L. M. T. Kumari et al. (2018) предлагают различные стратегии по снижению воплощенных выбросов в зданиях.
- 8.Оценка выбросов на протяжении всего жизненного цикла: Maryam Keyhani et al. (2023) оценивают выбросы ргодер за весь жизненный цикл обычного жилого дома в Великобритании, используя различные источники С Д данных о воплощенном углероде.

устойчивые здания

ОГРАНИЧЕННОСТЬ ВИДЕНИЯ

- **1.Ограниченность видения**: Из-за сосредоточенности только на выбросах углекислого газа другие важные экологические проблемы часто остаются без внимания.
- **2.Ограничения**: Сокращение выбросов углерода имеет важное значение, но этого недостаточно для общего улучшения состояния окружающей среды.
- **3.Необходим более широкий подход**: В комплексные экологические стратегии необходимо включить биоразнообразие, управление водными ресурсами и контроль загрязнения.

ЗДАНИЯ, СОДЕЙСТВУЮЩИЕ УСТОЙЧИВОМУ РАЗВИТИЮ

ДЕКАРБОНИЗАЦИЯ ЗДАНИЯ И ЗДАНИЯ С НУЛЕВЫМ УРОВНЕМ ВЫБРОСОВ Устойчивость Экономическая CKQA ОЦИОЛЬНОЯ Экологиче

Устойчивое развитие — это концепция, которая подразумевает сбалансированный и ответственный подход к удовлетворению потребностей нынешнего поколения без ущерба для способности будущих поколений удовлетворять свои собственные потребности.

Она предполагает учет экономических, экологических и социальных факторов для создания гармоничной и долгосрочной структуры развития.

Экологичное здание — это тщательно спроектированная, построенная и эксплуатируемая конструкция с минимальным негативным воздействием на аспекты устойчивости (социальные, экологические, экономические). При строительстве таких зданий приоритет отдается сохранению ресурсов, снижению потребления энергии и созданию здоровой и комфортной среды для жизни или работы.

б устойчивые здания

МЕТОД ЭКОЛОГИЧЕСКОЙ ОЦЕНКИ BRE (BREEAM)

- Создан в 1988 году и запущен в 1990 году.
- Сертификацияя зданий в более чем 50 странах.
- С момента его запуска было сертифицировано более 254 000 зданий и более миллиона зарегистрировано для оценки.

и Схема ду. сертификации аний анах. Добровольный Основан на проблемах

проекта:

- Новые здания
- Существующие здания (BREEAM In-Use)
- Разработки сообщества
- Проекты реконструкции

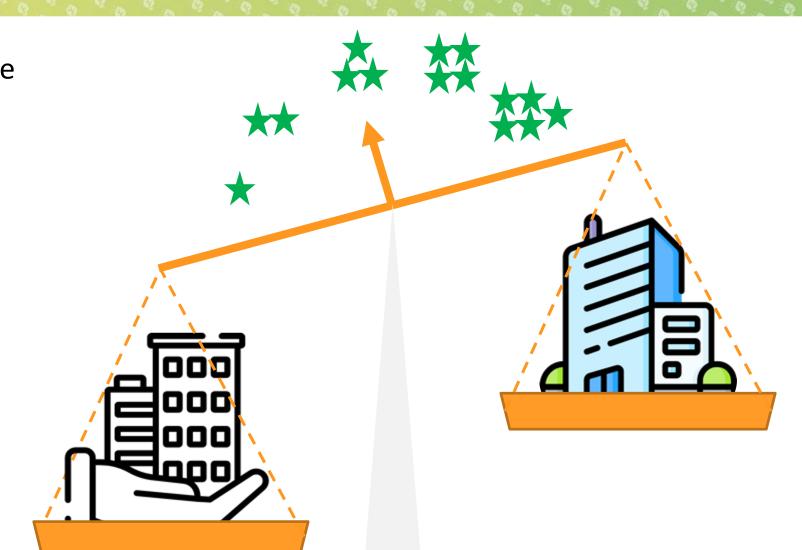
Охватывает следующие области:

- Энергия
- Водные ресурсы
- Отходы
- Загрязнение
- Землепользование и экология
- Здоровье и благополучие
- Транспорт
- Материалы
- Управление

Для Определенных организаций

Независимый и надежный

экологической


оценки

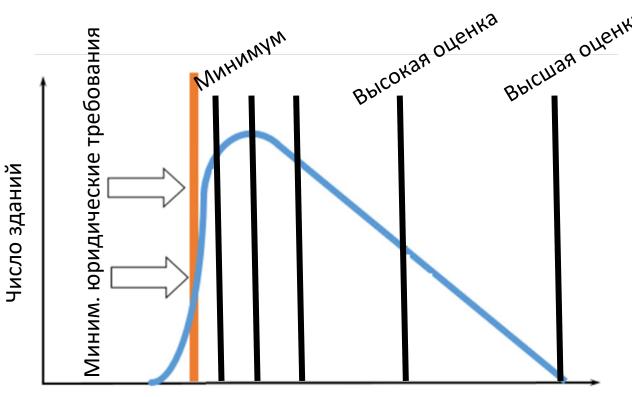
Ориентированный на клиента

МЕТОДЫ ОЦЕНКИ ЗДАНИЯ ОСНОВАНЫ НА ПРОЦЕССЕ, ДАЮЩЕМ ПОНЯТНЫЕ РЕЗУЛЬТАТЫ

Данные, предоставляемые для подтверждения соблюдения критериев устойчивости, могут быть использованы для присвоения баллов конкретной рейтинговой системе.

КЛЮЧЕВЫЕ ЭЛЕМЕНТЫ РЕЙТИНГОВОЙ СИСТЕМЫ ВКЛЮЧАЮТ ЭТАЛОН И ШКАЛУ ОЦЕНКИ

Система оценки устойчивости зданий:



Эталон устойчивого здания - все характеристики эталонного здания

Шкала оценки- «шаги», используемые для описания разрыва между оцениваемым зданием и эталоном

Критерии и группы критериев определяют направленность системы оценки и то, как измеряется соответствие эталону.

«Шаг» на схеме означает:

Реализация мер по достижению устойчивости

ДАННЫЕ ОБЕСПЕЧИВАЮТ ОТСЛЕЖИВАЕМОСТЬ, ВОСПРОИЗВОДИМОСТЬ И ПРОЗРАЧНОСТЬ РЕЗУЛЬТАТА

Подтверждающая информация должна быть:

- 1. Полной отвечающей критериям оценки
- 2. Понятной третьим лицам (независимая проверка совместимости)
- 3. Взята из надежного источника.
- 4. Отслеживаемой четкая последовательность и понятный источник.

К таким данным может относится:

- Записи общения
- Официальные письма
- Протокол заседаний
- Чертежи
- Технические характеристики
- Отчет об осмотре объекта
- Протоколы измерений
- И другие документы, фиксирующие ситуацию.

ИНИЦИАТИВА EU LEVEL(S) ОХВАТЫВАЕТ САМЫЕ ВАЖНЫЕ МАКРО-ЦЕЛИ И ПРЕДОСТАВЛЯЕТ ЧЕТКИЕ ПОКАЗАТЕЛИ

Level(s) — это инициатива EC, которая объединяет концепцию устойчивого строительства во всем EC, предлагая рекомендации по ключевым областям устойчивости и тому, как их измерять во время проектирования и после завершения строительства.

Макроцель	Показатель
1. Выбросы парниковых газов на	1.1. Энергоэффективность на этапе использования
протяжении жизненного цикла	1.2. Потенциал глобального потепления жизненного цикла
здания	
2. Ресурсоэффективный и	2.1. Спецификация строительных материалов
замкнутый жизненный цикл	2.2. Сценарии для здания (і) продолжительности
материалов	эксплуатации; (ii) адаптивности и (iii) демонтажа
	2.3. Отходы и материалы для строительства и сноса
	2.4. Оценка жизненного цикла от начала до конца (LCA)
В. Рациональное использование	3.1. Потребление воды на этапе использования
водных ресурсов 4. Здоровая и комфортная среда	4.1. Качество воздуха в помещении
	4.2. Выход за пределы температурного комфорта
5. Адаптация и устойчивость к	5.1. Сценарии прогнозируемых климатических условий
изменению климата	
б. Оптимизированная стоимость и	6.1. Затраты на всем жизненном цикле
ценность жизненного цикла	6.2. Создание стоимости и факторы риска

СЛОЖНОСТИ ПРИМЕНЕНИЯ

- **1.Сложные процессы сертификации**: Получение сертификации устойчивости, особенно при реновации зданий, часто является сложной задачей и требует более гибких и быстро реагирующих систем (<u>Cristina Jiménez-Pulido et al.</u> (2022))
- **2.Интеграция устойчивого развития в проектирование**: Сертификация устойчивости от простого инструмента оценки к важной части процесса проектирования (<u>Camilla Brunsgaard and Tine Steen Larsen (2019)</u>)
- **3.Технологическая интеграция**: Использование таких инструментов, как информационное моделирование зданий (ВІМ) для оценки жизненного цикла (LCA), важно, но сложно (<u>A. Naneva (2022)</u>.
- **4.Проблемы оценки в комплексном проектировании**: Оценка и реализация стратегий по снижению воздействия на окружающую среду посредством комплексного проектирования представляют значительные трудности (<u>Ricardo Leoto and Gonzalo Lizarralde (2019)</u>).
- **5.Понимание концепций устойчивости**: Существует необходимость в улучшении понимания и просвещения по вопросам устойчивости в секторе зданий (<u>Cathy T. Mpanga Kowet and Aghaegbuna Obinna U. Ozumba (2022)</u>)

АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

- **1.Вне сертификации**: Изучение практики устойчивого строительства, независимой от формальных систем сертификации. (Yewande S. Abraham et al., 2022).
- **2.Региональные стандарты устойчивости**: Исследование развития и будущего стандартов устойчивого строительства в конкретных регионах, таких как Саудовская Аравия. (<u>Bassem Jamoussi et al., 2022</u>).
- **3.Обзоры рейтинговой системы зданий**: Комплексный анализ существующих систем оценки зданий, их возможности и ограничения. (<u>Fabrizio Ascione et al., 2022</u>).
- **4.Показатели оценки устойчивости**: Разработка измеримых показателей для оценки устойчивости зданий (<u>Leonardo Rodrigues et al., 2023</u>).
- **5.Устойчивые процессы проектирования**: Изучение интеграции устойчивых практик в процессы проектирования, особенно в проектах, нацеленных на получение сертификатов, таких как Passivhaus (<u>Alberto Sangiorgio and Arianna Brambilla, 2020</u>).
- **6.Влияние сертификации на проектирование**: Изучение того, как сертификация устойчивости влияет на процессы архитектурного проектирования (Mathilde Landgren and Lotte Bjerregaard Jensen, 2018).
- **7.ВІМ и LCA в сертификации**: Интеграция информационного моделирования зданий (ВІМ) и оценки жизненного цикла (LCA) в процесс сертификации устойчивых зданий. (<u>A. Naneva, 2022</u>).
- **8.Системное проектирование для BREEAM**: Применение системного проектирования в строительстве для получения таких сертификатов, как BREEAM. (<u>Hanne Lunden Helseth and Cecilia Haskins, 2022</u>).

РЕЗЮМЕ: ОСНОВНЫЕ ВЫВОДЫ

- **1.Методическое отслеживание прогресса**: Методы оценки имеют решающее значение для установления и достижения дополнительных целей устойчивости в зданиях.
- **2.Локализация это ключ к успеху**: Решения в области устойчивого строительства должны быть адаптированы к местным условиям.
- **3.Сложности реализации**: Существование передовых технических решений само по себе не приводит к их внедрению; важное значение имеет преодоление барьеров на пути их реализации.
- **4.Междисциплинарный подход**: Исследования и реализация энергетической политики требуют сочетания технических, финансовых и социальных аспектов.
- **5.Центральная роль энергоэффективности**: Несмотря на широкий спектр вопросов устойчивого развития, энергоэффективность остается важнейшим фактором, влияющим на результаты устойчивого строительства.

ЭНЕРГОЭФФЕКТИВНОСТЬ В СЕКТОРЕ ЗДАНИЙ: ЧТО СТОИТ ЗА ЭТИМ ПОНЯТИЕМ?

СПАСИБО ЗА ВНИМАНИЕ!

Каролис Янусевичюс, PhD 🤌

Консультант по энергетике | Специалист по энергоэффективности

«Помогаем раскрыть ценность энергоэффективности и устойчивого развития для более устойчивого б<mark>уду</mark> **Щ GFO**lis Januševičius

karolis.janusevicius@gmail.com

http://karolis.janusevicius.lt

