

Европейский Союз – Туркменистан: Дни устойчивой энергетики

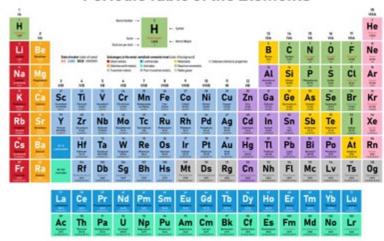
Лекции для профессоров, преподавателей и студентов Государственного энергетического института Туркменистана

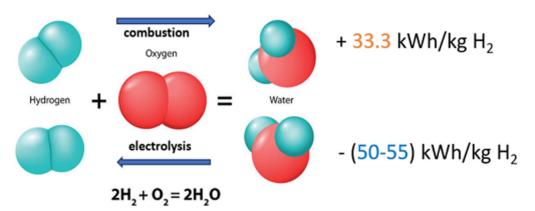
Государственный энергетический институт Туркменистана, Мары, 15 декабря 2023 г.

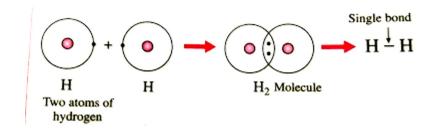
Перспективы и проблемы зеленого водорода

Мурман Маргвелашвили,

Мировой опыт для Грузии, WEG / Государственный университет Ильи







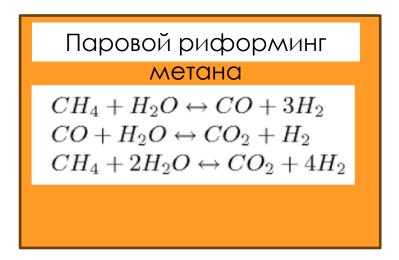
Физика и химия водорода

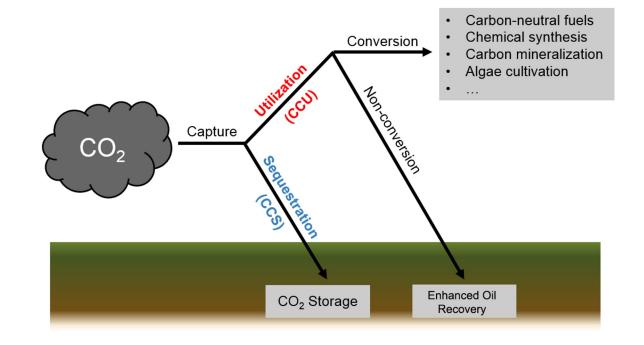
Periodic Table of the Elements

Метан CH_4 9,8 кВтч/ Hm^3

Водород H_2 - 3 кВтч/ H_M^3

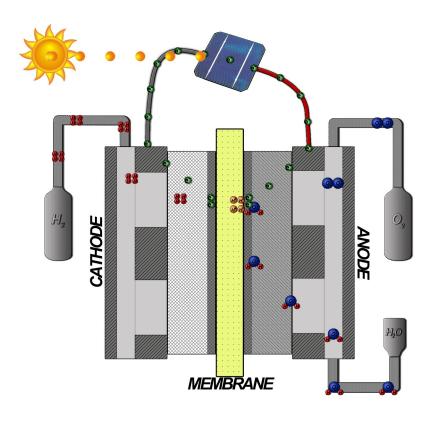
1/3 объемной плотности энергии по сравнению с природным газом





Паровой риформинг метана является основным современным источником водорода.

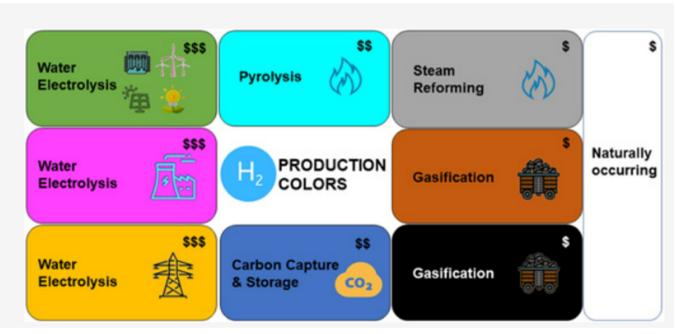
Произведенный CO₂ способствует изменению климата. Требуется улавливание и хранение углерода CCUS.



Электролиз

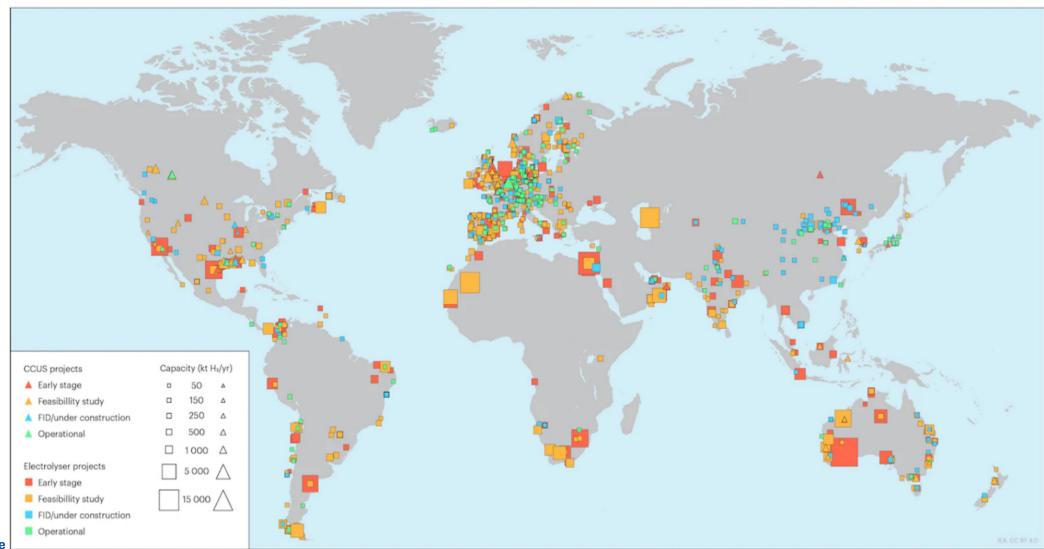
Щелочной Электролизер

Электролизер РЕМ

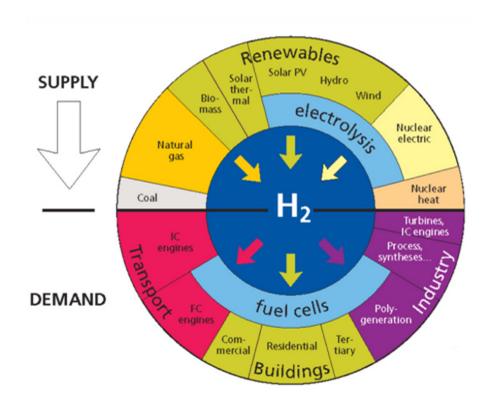


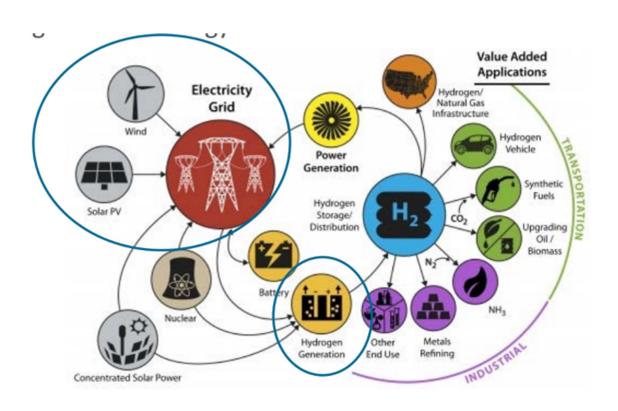
Методы получения водорода и водородная палитра

Colour	Fuel	Process	Products
Brown/Black	Coal	Steam reforming or gasification	H ₂ + CO _{2 (released)}
White	N/A	Naturally occurring	H ₂
Grey	Natural Gas	Steam reforming	H ₂ + CO _{2 (released)}
Blue	Natural Gas	Steam reforming	H ₂ + CO _{2 (%} captured and stored)
Turquoise	Natural Gas	Pyrolysis	H ₂ + C _(solid)
Red	Nuclear Power	Catalytic splitting	H ₂ + O ₂
Purple/Pink	Nuclear Power	Electrolysis	H ₂ + O ₂
Yellow	Solar Power	Electrolysis	$H_2 + O_2$
Green	Renewable Electricity	Electrolysis	H ₂ + O ₂


Источник: <u>Gases | Free Full-Text | The Hydrogen Color Spectrum:</u>
<u>Techno-Economic Analysis of the Available Technologies for Hydrogen Production (mdpi.com)</u>

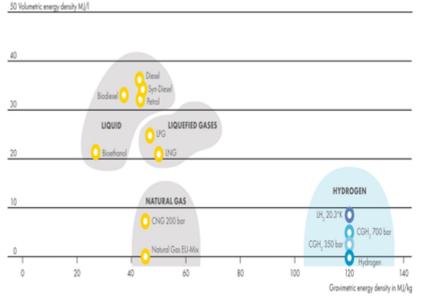
Источник: The many colours of hydrogen | Sustainable NI





Водородные проекты с низким уровнем выбросов во всем мире

Использование водорода для декарбонизации – системная задача



Хранение и транспортировка водорода

Геологическое хранилище (Соляные пещеры)

Хранение сжатого водорода 500-700бар

Водород сжиженный -2530С

Хранение химикатов -Паладиум гидрид900-кратный объем Н2

Аммиак и метанол

Транспортировка водорода

КОНТЕЙНЕРЫ СО СЖАТЫМ ГАЗОМ

При стандартных условиях (1,013 бар и 0 °C) плотность водорода составляет 0,0899 кг на кубический метр (м3). и 33 кг Н 2 /м 3 при 500 бар. Цель — 700 бар. поорген

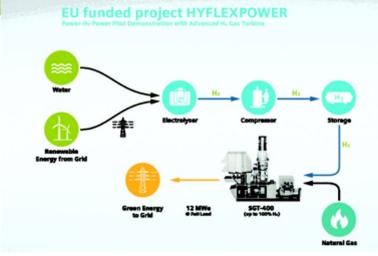
Транспортировка жидкого водорода

Температура -253°С низкое давл

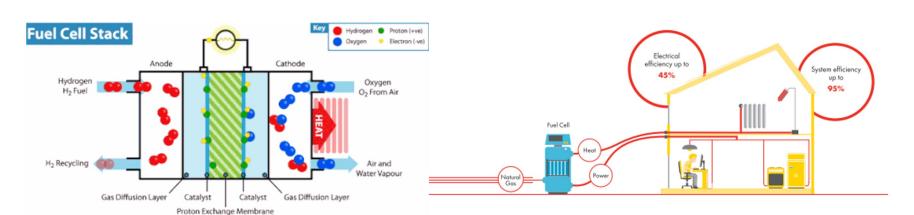
Водородные трубопроводы

Достижимо 80-85% метанового эквивалента

www.ebay.com



Использование водорода


Производство электроэнергии

•Совместное сжигание газовых турбин и двигателей

Электричество и тепло для дома и промышленности

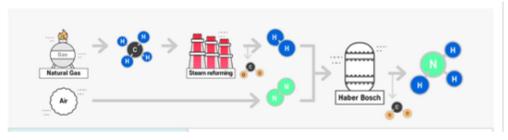
топливный элемент мощностью 1,4 МВт, Германия

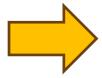
Водород в транспорте

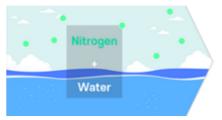
Декарбонизация промышленности

Стальная промышленность

- •DRI прямое восстановление железа
- •Водород для отопления


Цементная промышленность


- •Совместное сжигание
- •Улавливание и утилизация углерода CCU производство синтез-газа и других видов топлива


Переработка

•Использование GH₂ для расщепления молекул нефтяных соединений

Промышленность зеленых удобрений

Производные водорода

Аммиак

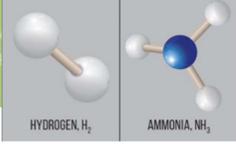
- •сырье для удобрений 20 млн. тонн в год (млн тонн в год) и 195 терминалов по переработке аммиака в более чем 120 портах.
- •Совместное сжигание угля на угольных станциях

 $2N_2 + 3H_2 \longrightarrow 2NH_2$

Hydrogen

Ammonia

- •Доставка топлива
- •Дробление использует 30% энергии.


Метанол

- •Сырье для химических процессов 15 млн т/год -2021.
- •Может использоваться в качестве автомобильного топлива.

Аммиак (NH₃) переносчик для GH₂

Преимущества:

Высокое содержание водорода: - Аммиак содержит высокий процент водорода по массе (около 17,6%). означает, что значительное количество водорода можно хранить и транспортировать в виде жидкого аммиака.

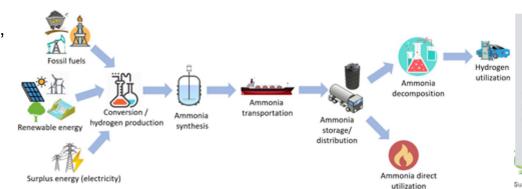
Легкое хранение и транспортировка: - Аммиак можно хранить и транспортировать при относительно низких давлениях и умеренных температурах. Это делает его более простым и безопасным в обращении и транспортировке на большие расстояния.

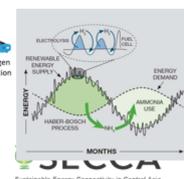
Развитая инфраструктура: - Существует глобальная инфраструктура для производства, хранения и транспортировки аммиака, что делает его практическим выбором для масштабного использования и распространения зеленого водорода. Эту инфраструктуру можно перепрофилировать для приложений, связанных с водородом.

Плотность энергии: более высокая плотность энергии, чем у жидкого водорода. Больше энергии можно хранить и транспортировать в том же объеме.

Безуглеродное производство:- Аммиак может быть полностью безуглеродным, если его производить с использованием возобновляемой электроэнергии.

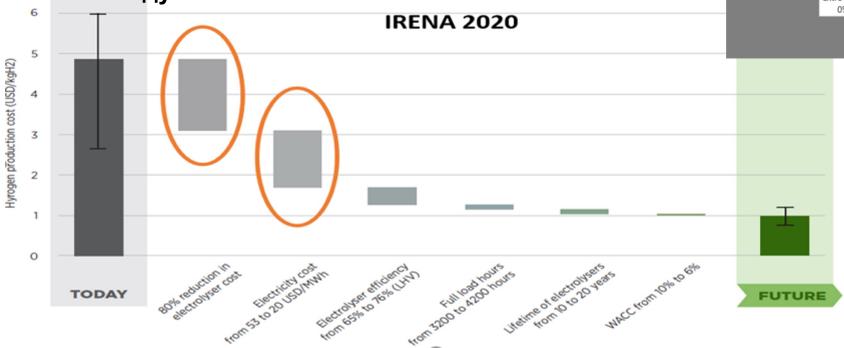
Приложения для конечных пользователей:

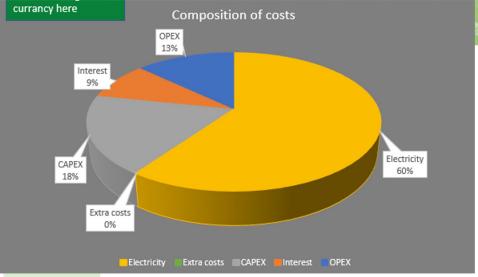

- •Аммиак широко используется в сельском хозяйстве в качестве сырья для удобрений.
- •Аммиак можно превратить обратно в водород посредством «крекинга» и использовать для различных целей, включая топливные элементы для производства электроэнергии и водородные заправочные станции для транспортных средств.


Проблемы:,

Потребность в эффективных и экономичных технологиях крекинга, Соображения безопасности,

Потенциал выбросов оксидов азота.



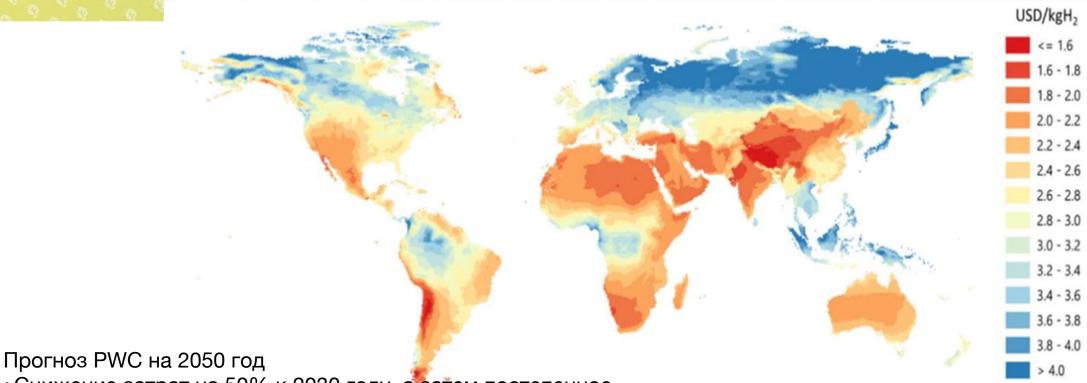


Стоимость зеленого водорода

- ❖Текущая стоимость зеленого водорода 3-8 евро/кг.
- ◆Стоимость серого водорода 1-2 евро/кг.
- **♦ Министерство энергетики США** достичь 1 доллара за

Источник: grinix.de

Параметры:


электричество € 50/МВтч Время работы 6000ч/год Процент -3%

Амортизация – 20 лет.

Предполагаемая цена h2

- Снижение затрат на 50% к 2030 году, а затем постепенное снижение до ставки 1 евро/кг до 2050 года.
- К 2050 году затраты на производство зеленого водорода в некоторых частях Ближнего Востока, Африки, России, Китая, США и Австралии будут находиться в пределах 1 евро/килограмм.

Источник: Analysing the future cost of green hydrogen |

Геополитика водорода и Центральной Азии

SOURCE: IRENA

The Green Hydrogen disruption: what nations, firms Central Asia decarbonizing the Southern Gas <u>Corridor</u> and investors are doing to reshape global energy WWW.WEG.ge **Energy Post**

www.weg.ge

СПАСИБО

Электролизеры

Щелочные электролизеры

•Доказаны

Протонообменная мембрана РЕМ

•Гибкие реверсивные

Топливные элементы на основе оксида натрия

- •Высокая температура
- •Более высокая эффективность

