Research and Production Center "Renewable Energy Sources" State Energy Institute of Turkmenistan

Project proposal on the topic:

Increasing water security by cultivating microalgae in drainage waters

Ovezdurdy Dzhumadurdyev Senior Researcher, Ph.D

Overview of drainage waters in Turkmenistan

2

- Currently, about 6 billion m3 of collector drainage waters are formed in Turkmenistan, and taking into account transit drainage waters of neighboring countries - 11 billion m3;
 - Qualitative indicators include total mineralization of the dense residue, the amount of the main ions (HCO3- SO4-, Cl-, Ca++, Mg++, Na++K+), water hardness, and its physical indicators (temperature, smell, taste, color);
 - ⁷ Mineralization of oasis drainage waters varies from 2-6 to 15-25 g/l.
 - Pollutants in drainage water formed as a result of applying fertilizers to irrigated fields are nitrites, nitrates, sulfates.

Total amount and mineralization of drainage water by velayats

	Velayat Volume of drainage water of different mineralization levels, g/l						Total drainage water by velayc
	Renser	Объем КДВ различной минерализации, г/л					Сумма КДВ
	DUMAT	<3	3-5	5-10	10-15	>15	по велаятам
Ahal	Ахалский	261,0		5,7	54,5	305,9	627,1
Mary	Марыйский	67,9		959,6	184,9		1212,4
Lebap	Лебапский	1241,3	•		•		1241,3
Dashoguz	Дашогузский	2334,9	5197,3	-	•		7532,2
Total	Всего по стране	3905,1	5197,3	965,3	239,4	305,9	10613

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A

3

Topic of scientific work:

4

Developing technology for using drainage water to cultivate microalgae for energy purposes

- Cultivating microalgae in drainage waters solves energy, environmental and water security issues;
- Microalgae accumulate what we think of as pollutants. For example, biogenic elements are the main nutrient required for algae to grow;
- ✓ Microalgae can accumulate from 20 to 60% lipids;
- Microalgae are capable of purifying drainage water and at the same time producing fertilizers and other products needed by farmers;
- ✓ Microalgae create additional water resources.

Project goal

5

Contribute to the supply of irrigation water to water-poor communities for crops in arid zones of Turkmenistan through biological treatment of drainage water using local microalgae

Project tasks

- Improving methods for evaluating drainage water quality and microalgae biomass using new cosmic ray neutron sensing (CRNS) technologies.
 - Studying the possibilities of cultivating local microalgae in drainage waters formed in irrigated areas of the Murghab oasis to reduce pollutants.
- Developing technology for cultivating microalgae in drainage waters, ensuring maximum biomass productivity.

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A

Benefits of isotope hydrology for the project

- Determining the extent to which drainage waters are contaminated with toxic substances;
- Assessing the level of biogenic elements in drainage water;
 - Assessing the level of microelements in drainage waters;
 - Presence of trace amounts of pesticides;
- \checkmark others.

6

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A

13.12.2023

Key barriers to isotope hydrology

- ✓ Lack of specialists with the necessary qualifications
- ✓ Lack of technical capacity
- Insufficient infrastructure to increase nuclear knowledge;
 - Financial barriers

7

- Regulatory barriers
- Motivational barriers
- ✓ Administrative and management barriers

13.12.2023

Ways to eliminate barriers. Capacity building

8

- Building national capacity during the implementation of isotope hydrology projects at the institute;
- Increasing the capacity of researchers to evaluate and monitor collector drainage waters of the Murghab oasis using isotope methods and hydrochemical analysis;
- Study trip to international centers to study the activities of scientific hydrological laboratories;
- Practical training for the use of modern laboratory equipment based on nuclear technologies.

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A

13.12.2023

Ways to eliminate barriers. Technical measures

9

- Creating the Center for research in the field of water resources using nuclear technologies
- ✓ Purchasing a set of laboratory equipment for isotope hydrology;
- Analytical tools for fast and cost-effective detection of contaminants in drainage water;
- ✓ Kapel-105, 105M capillary electrophoresis system (to measure cations and anions in drainage water samples);
- Aurora M90 inductively coupled plasma mass spectrometer (to measure microelements);
- ✓ ALPHA Fourier transform infrared spectrometer (to measure chlorophyll, lipids, proteins and others);

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A

Expected results

10

- Increased capacity of national specialists in the field of isotope hydrology;
- ✓ A laboratory for hydrochemical and isotopic analysis of drainage water created in the Research and Production center "Renewable Energy Sources" of the State Energy Institute of Turkmenistan;
 - Æ Equipment to measure protein, lipids and chlorophyll in local microalgae grown in drainage water purchased;
- ✓ Research results tested on a specific farm;

Thank you for attention!

11

Director of the Research and Production Center "Renewable Energy Sources" Ph.D. Saryev. K.A 13.12.2023