

Training workshop "Studying international practices in implementation of innovative energy efficiency technologies in the electric power industry. Methodology, goal and objectives of electricity and heat consumers energy survey" SEIT building, 62 Bayram Khan st, Mary, 13-18 March 2024

Integrating renewable energy into sustainable buildings

Agris Kamenders, International Consultant, SECCA

Content

- 1. Solar thermal systems
- 2. Solar PV systems
- 3. Heat pumps

Solar energy

Yearly sum of global irradiation on the horizontal surface, kWh/m² year

Source: http://re.jrc.ec.europa.eu/

1. Solar thermal

Passive design

Active solar thermal systems

Sustainable Energy Connectivity in Central Asia

1.1. Solar Collectors

Storage – examples of configurations

Tc – average collector temperature Ta=15°C ambient temperature G=400W/m² Ts Solar collector Hot water - 60°C Controller **Boiler** Storage ____ 5-35°C Tr Solar circulation Cold water - 15°C pump

Parameter	Good stratification	Poor stratification	
Ts	45°C	55° C	
Tr	15°C	35°C	
Тс	30°C	45° C	
Ta	15°C	15° C	
(Tc-Ta)	15°C	30° C	
η _c	66%	50%	

Funded by the European Union

Simplified sizing for solar domestic hot water

Hot water annual consumption	6500	m³/year
Hot water daily consumption	22	m³/day
Storage temperature	60	°C
Hot water annual consumption	300	MWh/yea r
Percentage produced by the solar system	25	%

1625m³/year 83MWh/year

Domestic Hot water requirements

0.73

East Southeast

Sustainable Energy Connectivity in Central Asia

2. Photovoltaic systems basic principle

Photovoltaic effect \rightarrow direct conversion of sunlight to electricity

Funded by the European Union

Photovoltaic – cell – module – array

Funded by the European Union

Main PV module technologies

PV module rating

Standard Test Conditions

e Reference Spectral Irradiance

Air mass coefficient AM 1.5

- The results from the test are rating inputs for the name plate power
- for comparison of products
- The results are NOT the power for real life operation, or system sizing

100 W Photovoltaic module						
MODEL XXX-0						
Irradiance	1000 Wm ⁻²					
Cell temperature	25° C	MAXIMUM SYSTEM				
Pmax	100 W	1000V				
Vpmax	18.00 V					
Ipmax	5.56 A					
Voc	22.10 V	8kg				
lsc	5.91 A	okg				
SERIAL number 00	DA11B2C3333333					

General solar PV set up

Grid connected systems

Initial project design

Module tilt and azimuth. Indicative example from Ashgabat with south orientation installation

Estimating energy generation – PV GIS

PHOTOVOLTAIC GEOGRAPHICAL INFORMATION SYSTEM	Accessibility (Legal notice (Cookies (Contact (English (en) 💙	New version at: http://re.jrc.ec.europa. eu/pvgis.html
European Commission > EU Science Hub > PVGIS > Interactive tools		
Home Tools Downloads - Documentation Contact us	Cursor: Use terrain shadows: Selected: 37.987, 58.352 Calculated horizon Elevation (m): 207 Upload horizon file Choose File PVGIS ver. 5.2 Switch to version 5.1 Choose File No file chosen ORIO CONNECTED PERFORMANCE OF GRID-CONNECTED PV OFF.ORD PV technology* Crystalline silicon Installed peak PV power [kWp]* Installed peak PV power [kWp]* System loss [%]* 14 Fixed mounting options Mounting position * Fixed mounting position * Fixed mounting position * Fixed mounting position * Siope [*]* 35 Optimize slope 	
Bayesmaky Bayesmaky المال كاسال المال كاسال الموال المال كاسال الموال الموال الموال الموال<	Actinuitif j 0 Optimize slope and azimuth PV system cost (your currency) Interest [%Sysar] Lifetime [years] Visualize results ± csv ± json	

Sustainable Energy Connectivity in Central Asia

SOLAR FOR HEATING AND HOT WATER DISTRICT LEVEL

3. Heat Pump Concept

Energy Source

Coefficient of Performance of a heat pump

Calculation C.O.P.

C.O.P =
$$\frac{100\%}{20\%}$$
 = 5

Heat Pump Examples

Heat Pump in Cascade

Heat pump boiler

- Uses Ventilation air energy recuperation
- Suitable for domestic hot water
- One boiler in every dwelling

Heat Transmission

Many options possible:

- in floor heating
- heated walls, ceilings
- Radiators

Energy Efficiency of Heat pump system, C.O.P depends on temperature of transmission system

The lower the required temperature, the higher the Coefficient Of Performance of the system Funded by the European Union

Floor & wall heating

Climate ceilings

Climate ceilings

=>T_{op} = 25°C

Low Temperature Convectors

Heat Sources

Many options possible

- Geothermal Energy
- Air
- Open water (Sea, River, Lake)
- Sewerage system
- Roof systems
- Road energy systems

Energy Efficiency of Heat pump system, C.O.P depends on temperature of heat source

The higher the heat source temperature, the higher the Coefficient Of Funded by Performance of the system

Geo Thermal Primary Energy Source

Vertical heat probes

Open ground Water wells (Aquifer)

Horizontal heat probes

Heat pumps instead of coal boilers

Heat pump for multi-apartment buildings

The temperature of the depths of the earth at a depth of 30-150 m does not depend on the season and is practically unchanged - about 6-9 °C above zero.

Heat pump and district heating

	Average outdoor temperature °C	Space heating MWh	Hot water & circulation losses MWh	Covered by Heat pump MWh	Covered by District heating MWh
January	-6.1	31.7	5.2	24.2	12.7
February	-5.1	26.6	4.7	21	10.3
March	-0.6	19.3	5.2	20.7	3.8
April	5.6	8.4	5.1	12.5	1.0
May	12.0	0.0	5.2	5.2	0.0
June	15.9	0.0	4.5	4.5	0.0
July	17.3	0.0	4.7	4.7	0.0
August	16.4	0.0	4.7	4.7	0.0
September	11.4	0.0	5.1	5.1	0.0
October	6.8	4.0	5.2	9.2	0.0
November	1.3	14.9	5.1	17.3	2.7
December	-3.6	26.0	5.2	22.3	8.9
Total		130.9	59.9	151.4	39.4

