

Training workshop: "Studying international practices in implementation of innovative energy efficiency technologies in the electric power industry. Methodology, goal and objectives of electricity and heat consumers energy survey" SEIT building, 62 Bayram Khan str, Mary, 13-19 March 2024

Pilot facility energy survey. Goals, objectives, methods of conducting residential and public buildings energy surveys. Methods of energy survey indicators analysis, energy efficiency feasibility study elaboration

> Zhaxylyk Tokayev International Consultant, SECCA

LEGAL FRAMEWORK

Rules for conducting an energy audit (August 2012)

Rules for the certification of candidates for energy auditors (November 2015)

Rules for analyzing the conclusion of an energy audit (November 2015)

5

2-201

KEY ACTORS

Ministry of Industry and Construction of the Republic of Kazakhstan

Legal entities -Customers

Energy auditors

Training centers

Electric Power and Energy Saving Development Institute (EEDI)

Association of Energy Auditors

INTERACTION WITH THE MINISTRY

rity in Central Asia 4

INTERACTION WITH THE MINISTRY

CUSTOMERS - LEGAL ENTITIES: ARE OBLIGED

OLD VERSION	NEW VERSION	
IE – 3 Legal entities – 613	IE – 3 Legal entities– 613	3,500 quasi-public sector entities consuming from 100 to 1,500 tons of reference fuel - in total,
Quasi – 3774	Quasi – 274	only consumed 2.3% of all SER entities
Total <u>4390</u>	Total <u>890</u>	
100%	97,7%	The load on the quasi- public sector has been reduced by 80%
' - 35)0 · ⁱ	

CUSTOMERS - LEGAL ENTITIES: ARE NOT OBLIGED

Less than tons of reference fuel consumed per year

1500

energy consuming facilities on the no balance sheet

energy consumed only for operating vehicles

on the balance sheet - only objects of historical and cultural heritage or religious buildings and structures.

ENERGY AUDIT

A LIST OF REQUIREMENTS TO AN ENERGY AUDIT ORGANIZATION

9

BODIES FOR CONFIRMATION OF PERSONNEL COMPLIANCE

Existing regulation

Certification by an authorized body

Requirements for issuing a certificate:

- A degree in Engineering and related technical major;
- Courses in energy audit;
- Experience of at least 5 (five) years;
- Test of knowledge for electrical safety permit grade III and higher;
- Recertification every three years.

Proposed regulation

Certification by bodies for confirmation of personnel compliance

Requirements for issuing a certificate:

- A degree in Engineering and related technical major;
- Courses in energy audit;
- Experience of at least 5 (five) years;
- Test of knowledge for electrical safety permit grade
 III and higher;
- confirmation of qualification every three years;
- > theoretical and practical exam.

ENERGY AUDITOR

Energy auditor*

An individual who has a certificate of conformity in the field of energy saving and energy efficiency

Certificate of conformity in the field of energy efficiency

A document issued by an accredited body in accordance with the established requirements, certifying the competence of an energy auditor

*The energy auditor carries out his activities only as part of one energy audit organization

QUALIFICATION REQUIREMENTS according to ST RK 3838-2023 Energy audit. Qualification requirements for an energy auditor

QUALIFICATION REQUIREMENTS

A degree in Engineering or related technical sciences

Work experience (including 1 year in the field of energy efficiency)

Certificate of course completion

Grade of Electric Safety Permit

Experience in conducting energy audits

either

10 entities with buildings, structures and constructions

or

5 industrial entities or those consuming more than 15,000 tons of reference fuel per year

5 entities with buildings, structures, constructions and

3 industrial entities or those consuming more than 15,000 tons of reference fuel

per year

List of data measuring systems and technical means neces to carry out energy audit activities (for buildings only)!!!

#	Device	Note	Application
1	Thermal imager	Used for inspection of building envelopes and engineering systems.	
2	Hygrometer	In most cases, a thermohygrometer is used to measure air temperature and humidity in rooms	
3	Luxmeter	Used to measure the level of illumination indoors and outdoors.	Constantly
4	Power quality analyzer	Used to determine power quality parameters and monitor power consumption	
5	Heat meter or heat flow meter	Used to determine the thermal conductivity of building windows. Use for other purposes is limited by the need to prepare measurement sites, which in most cases is not approved by the Customer	Often
6	Laser rangefinder	It is used along with a tape measure to determine the geometric parameters of building envelopes	Onen
7	Ultrasonic liquid flow meter	An ultrasonic flow meter is used when it is necessary to determine coolant flow. However, most buildings are equipped with metering devices	Rarely
8	Current clamps	In most cases, a power quality analyzer is used	Karery
9	Anemometer	Inspection of building ventilation systems is practically not carried out due to the significant amount of work involved and the need to create operating modes, which is not approved by the Customer. In modern facilities, where complex HVAC systems are maintained by specialized organizations, all measurements are carried out by them	
10	thermometer with a measurement range from 0 to 550 0C	When conducting an instrumental inspection of a building, a thermal imager is usually used for these purposes, despite the error in the measurement results.	
11	Thickness gauge (if the flow meter does not have this function)	Not applicable due to the need to prepare measurement sites and, as a result, non-approval of measurements by the Customer, as well as due to the lack of need to determine values.	Not used
12	Contact thermometer	When conducting instrumental inspections of buildings, a thermal imager is usually used for these purposes, despite the error in the measurement results.	
13	Pressure gauges	Not applicable due to the need to prepare measurement sites and, as a result, non-approval of measurements by the Customer, as well as the presence of their own instruments	
14	Gas analyzer	Not applicable due to the lack of survey objects (boiler houses)	

ENERGY INTENSITY OF GDP IN KAZAKHSTAN

Total primary fuel and energy consumption Total primary fuel and energy consumption

calculated in tons of oil equivalent

	Total	Coal	Crude oil	Natural gas	RES
	100%	48,2%	23,5%	26,4%	1,9%
	69 868 600 t.o.e	33 682 600	16 438 000	18 453 000	1 295 000

ENERGY INTENSITY OF GDP- indicator used to assess the energy efficiency of national economies

Macroeconomic indicator reflecting the market value of all final goods and services provided

calculated using the production method in thousands of US dollars

Sector	GDP structure, %				
Industry	29,5				
Construction	5,3	Production of goods			
Agricultture	5,2	(10)			
Transport	6,2				
Trade	16,4	Production of services			
Public sector	11	(52,9)			
Other services	19,3				
Net taxes on products and imports	7,1				
TOTAL, thousand US dollars	221 549 600				

*according to the Office of National Statistics for 2022

STRUCTURE OF FINAL ENERGY CONSUMPTION

		2014	2015	2016	2017	2018	2019	2020	2021	2022	Percentage of change
1	Total final energy consumption (thousand TOE)	39 912	38 360	38 686	40 028	41 300	41 570	40 267	43 263	43 402	8%
2	Industry	18 109	16 178	16 499	16 615	15 014	13 101	12 518	13 108	12 251	-32%
3	Buildings, housing and communal services	13 481	14 701	14 388	15 906	16 526	19 756	17 443	20 243	20 318	50%
4	Transport	5 184	5 500	5 693	5 529	6 282	5 902	7 440	8 045	8 609	66%
5	Agriculture and fisheries	895	723	733	862	1 652	870	832	971	1 069	19%
6	Other and non-energy use*	2 243	1 258	1 373	1 117	1 826	1 941	2 034	896	1 154	-48%

**in the energy balance the items "not specified in other categories" and "non-energy use"*

FINAL ENERGY CONSUMPTION IN KAZAKHSTAN

ENERGY INTENSITY OF MANUFACTURING INDUSTRY

Of 43 countries in terms of energy intensity per unit of added value of the manufacturing industry, Kazakhstan took 7th place.

ENERGY INTENSITY OF MINING INDUSTRY

Of 42 countries in terms of energy intensity per unit of added value of the mining industry, Kazakhstan took 11th place.

ENERGY INTENSITY OF CHEMICAL INDUSTRY

Of 32 countries in terms of energy intensity per unit of added value of the chemical (including petrochemical) industry, Kazakhstan took 7th place.

ENERGY INTENSITY OF FOOD INDUSTRY

Of 34 countries in terms of energy intensity per unit of added value of the food and tobacco industry, Kazakhstan took 29th place.

ENERGY INTENSITY OF FERROUS METALLURGY

Of 40 countries in terms of energy intensity per unit of physical output of ferrous metallurgy, Kazakhstan took 6th place.

ENERGY INTENSITY OF BASE METALS

Of 32 countries in terms of energy intensity of basic metals per unit of added value, Kazakhstan took 24th place.

MAIN ENERGY CONSUMERS, TOP-109

Status Target indicators for TOP-109 have been developed

lılı.

Share of TOP-109 consumption > 50% of the country's consumption

Effect

5% reducing the energy intensity of GDP by 2029

COMPARISON

COMPARISON

Company A Electricity consumption (2022) 4,8 billion kWh			Ļ	Company B Electricity consumption (2022) 12,8 billion kWh			
	Potential*:			Potential*:			
	Investment 32,6 n	nillion USD		Investment 9,5 million USD			
	Sovings	4,2 million USD		Sovingo	4 million USD		
	Savings	231 million kWh (4,8%)	Savings		197 million kWh(1,5%)		
	Released power	26,4		Released power	22,5		
		A total of released powe	r 48,9 MW				
	Investments in energy-sav release power eq 48,9 M	ving measures that uivalent to	Inve	nvestments for the construction of thermal power plants with the capacity			
	19 billio	on KZT		60 billion KZT			
Fund the E	ed by uropean Union			* based on the energy audits	e results of SECCA Sustainable Energy Connectivity in Central Asia 30		

FUEL CONSUMPTION BY POWER PLANTS

In 2019, Kazakhstan ranked second among individual countries with its share of coal in fuel consumption for heat and power production of 74% in 2019, after China, which had a 78% share of coal. Countries where natural gas had a significant share of total fuel supplies for power and heat production included Belarus (90%), Russia (58%), and the UK (40%).

ENERGY SECTOR EFFICIENCY

In Kazakhstan, energy sector efficiency in 2019 was 57%. The relatively low efficiency of the energy sector (57%) in Kazakhstan can be explained by energy losses during transformation (due to the high share of coal for electricity and heat production), energy losses during transportation and distribution, and the high level of own use in the energy industry.

