

Round table Assessment of biomass potential for the Kyrgyz Republic Bishkek, 17 July 2024

Using of biomass for electricity and heat production – Latvian experience

Agris Kamenders , Energy Expert, SECCA

Primary energy consumption in Latvia

- In Latvia, heat energy is produced in boiler houses and cogeneration plants, simultaneously generating electricity
- Over the past 10 years, there has been a significant shift in the distribution between heat energy produced in boiler houses and cogeneration plants
- In 2007, 56.0% of the total heat energy was produced in cogeneration plants and 44.0% in boiler houses. By 2017, the share of heat energy produced in cogeneration plants had increased to 75.7%.

Electricity generation mix, Latvia, 2022

District heating (DH) in Latvia

- Number of boiler houses 663
- Number of cogeneration plants 132
- Annual sales 7.46 TWh
- Annual turnover EUR 360 million
- Tariffs regulated > 5000 MWh/year

DH coverage in EU countries

Iceland 95% Latvia 65% Denmark 60% Estonia 52% Poland 52% Sweden 50% Czech Republic 49% Finland 49% Slovakia 40% Hungary 16% Austria 12.5% Germany 12% Netherlands 3% Great Britain 1%

District heating (DH) in Latvia

City	Annual sales(GWh)	Per cent %
LATVIJA	6 944	
Rīga	3 484	50%
Daugavpils	467	7%
Jelgava	213	3%
Jēkabpils	89	1%
Jūrmala	164	2%
Liepāja	288	4%
Rēzekne	163	2%
Valmiera	106	2%
Ventspils	217	3%

DH percentage in cities - 75%

Energy resource prices

Natural gas prices [EUR/MWh]

Wood chips prices [EUR/MWh]

Biomass combustion technologies

Domestic appliances:

- stoves;
- fireplaces;
- boilers;

Industrial and district heat appliances:

- pulverised burners;
- fluidized bed;
- cyclone chambers;
- bed combustion;
- etc.

Wood log and briquette stoves

- + Simple and cheap technology;
- + Cheap fuel;
- + Possible integration of water boiler;
- Low comfort, short working time;
- Low efficiency, high emissions

Based on wood stove, designed for installation in living area + Fully automatic operation

Pellet boilers

- + High efficiency, low emissions;
- + Automatic/semi-automatic operation, variable load;
- + Fuel storage for long period;
- + Big choice of technologies;
- Relatively expensive technology.

Solar and pellet combisystem

- System designed for multifamily building
- Compact and modular design. High level of comfort
- Solar thermal and pallet boilers in one system

Before and after complex after complex renovation and RES integration

Modular system concept

Modernization of Existing Boiler Houses

Salaspils Siltums:

- Serves 85% of town's 18 000 residents
- Installed 1720 solar collectors (12 000 KWh/year)
- Complemented by 8000 m³ high storage tank and 3MW wood chip boiler
- Increased renewable energy share by ~35%

Benefits:

- Reduced Reliance on Natural Gas
- 90% Energy for Heating from Renewables
- 20% of Thermal Energy from Solar
- Potential 5% Tariff Reduction for Residents

Project Significance:

Investment: EUR 7.08 million (EU Cohesion Fund: EUR 2.73 million; SEB loan: EUR 2.8 million)

Modernization of Existing Boiler Houses

2010 Outdated municipal DH system

2012 new 7 MW wood chips boiler and new gas boilers

2015 flue gas condenser

2019 1,720 solar collector field and storage tank and 3 MM wood chips boiler

Sustainable Energy Connectivity in Central Asia

Biomass Cogeneration Plant in Latvia

Energy Source: Utilizes local renewable energy resources, primarily energy wood chips

The station's **electrical capacity is 23 MW, while its thermal capacity is 45 MW**

Efficiency and Reliability: Enhanced the efficiency and reliability of the city's district heating system for customers

CO2 Emissions: Reduced CO2 emissions from heat production in the city by 90% compared to 2010

Production:

 Heat Energy: Produces approximately 230 GWh of heat energy annually, which is supplied to Jelgava's district heating network

Electricity: Electricity generated is sold on the Nord Pool exchange

Funded by the European Union

Biomass Cogeneration Plant in Latvia

Fuel reception area

Technology:

- Combustion Technology: Fluidized bed combustion with a bubbling sand layer
- Boiler Model: HYBEX fluidized bed steam boiler
- Steam Production: 26 kg/s at 117 bar, 527°C from feed water at 180°C

Capacity - Nominal Input Power: 77 MW

- Thermal Capacity: 45 MW
- Electrical Capacity: 23 MW

Wood chips CHP in Riga

Overview:

- Capital and Largest City: Riga, Latvia
- District Heating Operator: RIGAS SILTUMS

Initiative: Construction of a wood chips CHP plant

- Output: 4 MWel and 22 MWth
- **Goal**: Enhance economic viability and sustainability of the fuel supply

Location of the plant	Tīraines iela 5a, Riga		
Cogeneration technology	steam turbine		
Electrical power/Thermal power	4 MWel and 22 MWth		
Kind of fuel	Wood fuel (mainly woodchips)		
Primary energy savings per year	31,2 %		
CO2 savings	23.778 tons per year		
Operating hours	5250 hours /year		
Year of installation/start of	Finished in 2013		
operation			
Investment	Total investments €16m (€5.6m from EU		
	Cohesion fund)		

Flue gas condensation

- Direct contact flue gas condenser designed for high capacity wood chip boilers
- Simple and reliable technology. High efficiency on heat recovery and emission reduction

Condensation in big scale plants

- + Efficiency increase 10-30%
- + Dust emissions 90%

Flue gas condenser for biomass boilers

Recent Upgrades:

- **Completion**: Last modernization finished in late 2011
- Fuel Source: All boilers now fully operate on wood chips

Installation of Fuel Gas Condensers:

- Increase efficiency by utilizing thermal energy from outgoing flue gases
- Heat Recovery up to 30% of heat from outgoing flue gases can be recovered

The total investment costs of the reconstruction project were 3.7 million EUR with a co-financing rate of 45.5%. The costs of the flue gas condenser system production and installation were around 420 000 EUR

Fuel switch project from - container type boiler houses

