

International Conference

Sustainable Energy for Environmental Protection. Reviewing International Best Practice Mary, 28 November 2024

Features of Implementing Energy Efficiency Technologies in New Construction Projects

Agris Kamenders

International consultant, SECCA

Why buildings?

- 30% of global final energy consumption
- 26% of global greenhouse gas emissions
- 45% of materials utilized in construction
- 36% of overall waste generation
- Humans spend 80% of time indoors (residential, health, work environments

For EU it is vision of a decarbonized building stock by 2050

Sustainable Design Strategies

Main Challenges in a Continental Climate:

- Increased cooling demands leading to higher electricity peak loads
- Water scarcity

Proposed Sustainable Design Strategies:

- Enhance energy efficiency and integrate renewable energy sources (RES)
- Utilize passive cooling techniques, such as shading, to reduce solar heat gain
- Limit extensive glass areas to improve thermal performance
- Implement night cooling systems to lower indoor temperatures naturally
- Harvest and utilize rainwater for sanitation and irrigation

Energy efficiency different scale

Avots: Steemers, Cambridge university

Timely decision-making has a significant impact on costs!

Implementation of new solutions/technologies

Energy efficiency measures

Future requirements in EU for new buildings

Transforms a building or building:

- before 1 January 2030, into a nearly zero-energy building (starting from 2021)
- as of 1 January 2030, into a zero-emission buildings (as of 1 January 2028, new buildings owned by public bodies)

Bosco Verticale, Milan

Future requirements in EU for new buildings: Zero-emission buildings

- Nearly zero-emission building (NZEB) means a building that has a very high energy performance, while the nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable source
- Focus of the proposal is the reduction of operational greenhouse gas emissions, ZEB definition further include the calculation life-cycle Global Warming Potential (GWP) and its disclosure through the energy performance certificate of the building

nable Energy Connectivity in Central Asia

Conceptual approach to tackling the energy efficiency

Macroeconomic and private benefits of energy efficiency in buildings

Macroeconomic co-benefits (Government)	Private co-benefits (Building owners)
Environmental benefits	Building quality benefits
Reduction of air pollution	Building physic and technical improvements
Construction and demolition waste reduction	Ease of use and control by the user (automatic thermostat controls, easier filter changes, faster hot water delivery)
Economic benefits	Aesthetics and architectural integration
Lower energy cost	Useful building areas
New business opportunities	Safety (intrusion and accidents)
Employment and green jobs	Economic benefits
Subsidies to cover energy costs avoided	Reduced exposure to energy price fluctuations
Improved productivity	User wellbeing benefits
Social benefits	Thermal comfort
Improved social welfare and fuel poverty alleviation	Natural lighting and contact with the outside environment
Increased comfort	Indoor Air quality
Reduced mortality and morbidity rates	Internal and external noise
Reduced physiological effects	Pride, prestige, reputation
Improved energy and water security	Ease of installation and reduced annoyance

U-value and surface temperature and comfort

Autors: kra/EIV

Examples: Components of central ventilation equipment

- Air-to-air heat exchanger with heat recovery ≥ 75%
- DC motor
- Control/regulation: operation levels and air balance
- Thermal insulation and airtightness Condensate drain
- Filter: exhaust air + outdoor air Anti-frost protection Summer bypass

Utilization of solar energy and daylight

Positive Impact: Free Energy

- Passive Systems: Utilize solar heat gains
- Active Systems: Implement solar collectors, PV panels

Negative Impact: Potential Room Overheating and Glare

Solar energy utilization is crucial for achieving low-consumption buildings

Solar energy through glazed surfaces: 10-60 kWh/m² per year depending on the building, location...

Sustainable technologies used

- **Primary energy efficiency** in buildings includes heat pump and renewable energy technologies (solar PV)
- Heat pump for energy, significantly more efficient than standard solutions, supporting ventilation heating and hot water preparation.
 Water-to-air heat pump linked with the city's sewage, maintaining 12-18°C for higher operational efficiency. This system supports heating, cooling, and summer freecooling mode
- Building Management System (BMS) display in the building to show heat exchange data, symbolizing the gained energy
- Experimental solar panel placement in the courtyard allows parking space below, maximizing sun exposure without affecting the building's aesthetics
- Ensuring air tightness in passive building constructions concept
- **Rainwater:** An excellent, biologically active resource for automatic green wall irrigation

Shading using nature-based solutions

- West side features automatic blinds. East side uses climbing plants on the facade to reduce solar impact
- Plants act as a passive solution: providing shade in summer and allowing solar warmth in winter
- Emphasizes the importance of sharing experiences among Latvian low-energy building designers, highlighting both successes and areas for improvement

Smart lighting adjusts brightness based on room depth and proximity to windows

Optimal design

- South-facing large glass facade designed for unobstructed outdoor views
- To prevent overheating, initially considered installing blinds, but **extensive overhangs** were chosen as a better solution

Energy monitoring and control

• CO₂ sensors control ventilation based on occupancy, ensuring optimal air quality

Funded by the European Union Conceptual approach with CO₂ sensors control ventilation based on occupancy

Key functionalities

aims at:

- the ability of a building to manage itself
- to interact with its occupants,
- to take part in demand response and
- to contribute to smooth, safe and optimal operation of connected energy assets

Impact criteria

Overall

Buildings for Tomorrow: Emerging Practice in the EU

- Moving towards clean construction to **tackle embodied emissions**. Including increasing building and material life spam.
- Use of new innovative materials (vacuum insulation, smart glass, ..)
- Smart building operations digitalization and electrification
- Moving from energy efficiency to energy flexibility react to signals from the energy grid and energy storage
- From energy consumer to energy prosumer integration of renewable energy (solar PV and heat pumps)
- Focus un **adaptation to climate change** (cooling during heat wave, rainwater utilization)

