

The European Union – Uzbekistan: Sustainable Energy Days 2024 Sustainable Energy Future for Uzbekistan: Lectures on Energy Efficiency in Buildings Tashkent, 20 November 2024

Integrating RE solutions in buildings: the case of rooftop solar

Darius Krauciunas

Senior Expert in Energy Finance, SECCA

Content

- RE plans in Uzbekistan
- Small-scale solar in Uzbekistan
- Specifics of RTS systems
- SECCA case study of rooftop solar
- Study objectives
- Parameters of modelled buildings
- Different load profiles
- HomerPro modelling assumptions and principles

- Remuneration schemes and tariff rate levels
- Modelling and simulation results
- Differences of optimal RTS systems
- Current vs switching tariff rates
- Conclusions and further work
- Factors of successful RTS integration in buildings

Renewable energy (RE) plans and targets in Uzbekistan

Growth of RE share in Uzbekistan

Source: Ministry of Energy of the Republic of Uzbekistan

- Uzbekistan has ambitious RE plans and targets
- National RE target:
 - More than 25 GW installed capacity
 - or 40% RE in generation mix by 2030
- Plan to reach 4.5 GW of solar in 2025
- This solar capacity increase is driven by 17 large-scale (100-300 MW and one 1000 MW) projects

Small-scale and rooftop solar implementation in Uzbekistan

Deployment of small-scale solar in Uzbekistan

Source: Ministry of Energy of the Republic of Uzbekistan

Funded by the European Union

- Push for RTS and small-scale solar initiated by Presidential Decree of 16 February 2023
- Set short-term target of 1750 MW of RTS and small-scale solar
- Support programs:
 - "Солнечный дом" (<50 kW solar for households) – 45 MW contracted by Aug 2024
 - Platform "Зеленая Энергия" (RTS on social and public buildings) installation of 100 MW planned by end of 2024
- Impressive start and solid RTS deployment results achieved already

Specifics of small-scale rooftop solar

- Rooftop solar (RTS) is sub-category of distributed solar, RTS represents small-scale projects with 1 kW – 1 MW of installed capacity
- Compared to large-scale solar projects, RTS has its own unique features:
 - Disaggregated base: large number of small users
 - Small scale means: lower PV system efficiency, higher LCOE, longer payback periods
 - Each RTS system should be individually tailored to: power consumption profile of end-user, available roof areas, tariff charged, grid capacities, etc
 - "Unprofessional" customers lacking experience, knowledge of and trust in solar technology
 - Limited investing capacity and shortage of available financing products
- Because of this specifics, implementation and scaling of RTS investments require more coordinated efforts and comprehensive mechanisms of financial and non-financial support

SECCA study – the case of rooftop solar

Identification of optimal and financially viable RTS options in Tajikistan and Developing RTS financing scheme

Objectives of the study of RTS systems in Tajikistan

- Perform energy modelling and simulations of rooftop solar (RTS) systems in Tajikistan using:
 - > Actual data on: solar insolation, available roof areas, electricity consumption for each building type (business, public, residential), Capex, O&M costs
 - > Hypothetical data about: possible metering schemes and end-user tariff levels
- Identify optimal, superior-to-grid RTS options
- Analyse economically viable RTS options and financially feasible tariff levels

Buildings examined - actual electricity consumption data

Segment key and no. of buildings.		
Residential segment	6	
Public segment	14	
Business segment	10	
Total buildings examined	30	

Cogmont kow and no of huildinger

Parameters of buildings used for HomerPro simulations

Name	Segment and usage	Address	Total roof area	Useful roof area (80% of total area)	Max available PV system*	Daily power use	Annual power use
			m2	m2	kW	kWh/ day	kWh/ year
Dushanbe Mall	Business, shopping centre	Bekhzod Street 47, Dushanbe	8,650	6,920	690	10,960	4,000,465
International Presidential School	Social, school	Karamov Street 101, Dushanbe	12,820	10,250	1,250	1,517	553,747
Residential-1	Residential, living	Nusratullo Makhsum Avenue 61/1, Dushanbe	413	290	21	20	7,424

Note: * - applying max of 1kW PV installed capacity for 5-15m2 of useful roof area

Different hourly load electricity profiles

Practical consumer needs satisfied by modelled and selected RTS systems:

- > Business and public segments all consumer electricity needs
- > Residential segment power required for lighting of general premises and elevators

Financial and operational assumptions

Investment and operational cost assumptions

RTS system component	Lifetime	O&M	Initial investment	
				Unit of
		USD/year	Amount	measurement
Project lifetime	25 years			
PV system	25 years	4	418	USD/kW
Storage system: Li-Ion	15 years	1	262	USD/kWh
Storage system: Lead Acid	7 years	1	150	USD/kWh
On-grid convertor	15 years	0.5	38.5	USD/kW
Hybrid convertor	15 years	0.5	180-270	USD/kW
Generator (diesel)	15,000 hours	300	300	USD
Diesel fuel price		1 (USD/litre)		

Financial and economic assumptions

Assumption	Description / amount
Value added tax (VAT)	VAT excluded from calculations
	Modelling made in real terms,
Inflation	values not adjusted for inflation
Discount rate used	10%

Principles of rooftop solar modelling with HomerPro

- Large number of iterative HomerPro software runs
- Rooftop solar (RTS) option is compared to base-case
- Base-case = the use of the grid option
- We structured RTS modelling and simulations to include and combine:
 - > 3 remuneration schemes and
 - > 3 different tariff rate levels

RTS remuneration schemes and tariff rate levels analysed

• Without net metering

> consumer is not paid for the surplus PV energy produced and sent to the grid

Net metering (NEM)

rate paid for unconsumed PV energy exported to the grid is equal to the retail end-user electricity tariff (i.e. the import rate is equal to the export rate)

Net billing

> export to the grid rate significantly differs from (and usually is considerably lower than) the import rate

• Current tariffs

 tariffs effective in year 2024 for the specific consumer category (business, public, residential)

• Average tariffs

 weighted-average end-user tariff of 0.032
USD/kWh for year 2024, which is the estimated average rate of the whole power market of Tajikistan

Switching values

> tariff levels at which the RTS system starts to be optimal (superior) compared to the current grid option, it signals the break-even tariff level for viable RTS deployment

RTS system options modelled

Business segment

Option	Pomunoration schomo	Tariff loval	Import from	Export to	Optimal
No.	Remuneration Scheme		the grid rate	the grid rate	system
			USD/ kWh	USD/kWh	
1	Without net metering	Current	0.064	0	RTS
2	Without net metering	Average	0.032	0	Grid
3	Without net metering	Switching value	0.039	0	RTS
4	Net metering	Current	0.064	0.064	RTS
5	Net metering	Average	0.032	0.032	Grid
6	Net metering	Switching value	0.039	0.039	RTS
7	Net billing	Switching value	0.064	0.032	RTS

Residential segment

Option No.	Remuneration scheme	Tariff level	Import from the grid rate	Export to the grid rate	Optimal system
			USD/ kWh	USD/kWh	
15	Without net metering	Current	0.024	0	Grid
16	Without net metering	Average	0.032	0	Grid
17	Without net metering	Switching value	0.057	0	RTS
18	Net metering	Current	0.024	0.024	Grid
19	Net metering	Average	0.032	0.032	Grid
20	Net metering	Switching value	0.039	0.039	RTS
21	Net billing	Switching value	0.024	0.043	RTS(nm*)

Note: nm* - not meaningful in practice

Public segment

Option No.	Remuneration scheme	Tariff level	Import from the grid rate	Export to the grid rate	Optimal system
			USD/ kWh	USD/kWh	
8	Without net metering	Current	0.028	0	Grid
9	Without net metering	Average	0.032	0	Grid
10	Without net metering	Switching value	0.040	0	RTS
11	Net metering	Current	0.028	0.028	Grid
12	Net metering	Average	0.032	0.032	Grid
13	Net metering	Switching value	0.039	0.039	RTS
14	Net billing	Switching value	0.028	0.043	RTS(nm*)

RTS modelling and simulation results

All 5 business

feasible even without segment options net metering viable within current 3 options feasible with tariff rate of 0.064 net metering & net Out of 21 option USD/kWh billing simulated, under 9 options RTS is more **4 options of public** Logical, due to end-user viable than the grid tariff subsidisation in and residential these segments segment viable, but In 3 out of 4 options, > outside of current the rate gap of about tariff range 20% is manageable

2 options financially

Optimal RTS systems are very different

Key operational and economic parameters of optimal RTS systems

SECCA Sustainable Energy Connectivity in Central Asi

Comparison of switching and current tariff rates

Conclusions and further work

- Despite below cost-recovery level of average tariffs in Tajikistan, there are certain segments already, where RTS system deployment is financially feasible
- Business segment end-users have the most of identified financially feasible RTS options due to the highest tariff rate charged to this consumer category
- Current tariff level in public and residential segments is insufficient for financially feasible adoption of RTS. However, the rate gap of around 20% is manageable and could be absorbed in relatively short term
- Our ongoing work in Tajikistan: defining key financing scheme parameters, subsidy forms and proportions, selecting appropriate business model for RTS deployment, search for financing and implementation partners.

Factors of successful RTS integration in buildings

Factors

- Cost-reflecting electricity tariffs
- Regulatory framework and clarity
- Metering arrangements in place
- Subsidies and strong financial support
- Comprehensive and continuous technical assistance
- Dedicated financing products
- Suitable business model
- Technical and grid connection requirements

Results

- > Increasing deployment and scaling-up of RTS
- Growth in market awareness, capacity building and user trust
- Financially attractive investments (<5 years payback)

Benefits

- > Electricity cost savings
- > Hedge against rising tariffs
- > Increased property values
- > Reduced CO2 emissions

Thank you for your attention!

Darius Krauciunas, Senior Expert in Energy Finance, SECCA <u>darius@tvarus.eu</u>

