

The European Union ‒ Uzbekistan: Sustainable Energy Days 2024 Sustainable Energy Future for Uzbekistan: Lectures on Energy Efficiency in **Buildings** Tashkent, 20 November 2024

Integrating RE solutions in buildings: the case of rooftop solar

Darius Krauciunas

Senior Expert in Energy Finance, SECCA

lintec

Content

- **RE plans in Uzbekistan**
- Small-scale solar in Uzbekistan
- Specifics of RTS systems
- SECCA case study of rooftop solar
- Study objectives
- Parameters of modelled buildings
- Different load profiles
- HomerPro modelling assumptions and principles
- Remuneration schemes and tariff rate levels
- Modelling and simulation results
- Differences of optimal RTS systems
- Current vs switching tariff rates
- Conclusions and further work
- Factors of successful RTS integration in buildings

Renewable energy (RE) plans and targets in Uzbekistan

Growth of RE share in Uzbekistan

Source: Ministry of Energy of the Republic of Uzbekistan

- Uzbekistan has ambitious RE plans and targets
- National RE target:
	- More than 25 GW installed capacity
	- or 40% RE in generation mix by 2030
- Plan to reach 4.5 GW of solar in 2025
- This solar capacity increase is driven by 17 large-scale (100-300 MW and one 1000 MW) projects

Small-scale and rooftop solar implementation in Uzbekistan

Deployment of small-scale solar in Uzbekistan

Source: Ministry of Energy of the Republic of Uzbekistan

Funded by the European Union

- Push for RTS and small-scale solar initiated by Presidential Decree of 16 February 2023
- Set short-term target of 1750 MW of RTS and small-scale solar
- Support programs:
	- "Солнечный дом" (<50 kW solar for households) – 45 MW contracted by Aug 2024
	- Platform "Зеленая Энергия" (RTS on social and public buildings) – installation of 100 MW planned by end of 2024
- Impressive start and solid RTS deployment results achieved already

Specifics of small-scale rooftop solar

- Rooftop solar (RTS) is sub-category of distributed solar, RTS represents small-scale projects with 1 kW – 1 MW of installed capacity
- Compared to large-scale solar projects, RTS has its own unique features:
	- Disaggregated base: large number of small users
	- Small scale means: lower PV system efficiency, higher LCOE, longer payback periods
	- Each RTS system should be individually tailored to: power consumption profile of end-user, available roof areas, tariff charged, grid capacities, etc
	- "Unprofessional" customers lacking experience, knowledge of and trust in solar technology
	- Limited investing capacity and shortage of available financing products
- Because of this specifics, implementation and scaling of RTS investments require more coordinated efforts and comprehensive mechanisms of financial and nonfinancial support

SECCA study – the case of rooftop solar

Identification of optimal and financially viable RTS options in Tajikistan and Developing RTS financing scheme

Objectives of the study of RTS systems in Tajikistan

- Perform energy modelling and simulations of rooftop solar (RTS) systems in Tajikistan using:
	- ˃ Actual data on: solar insolation, available roof areas, electricity consumption for each building type (business, public, residential), Capex, O&M costs
	- ˃ Hypothetical data about: possible metering schemes and end-user tariff levels
- Identify optimal, superior-to-grid RTS options
- Analyse economically viable RTS options and financially feasible tariff levels

Buildings examined - actual electricity consumption data

Segment key and no. of buildings:

Number and types of buildings examined **Industrial Business Schools facilities centres** 4 **Medical clinics** 3 $\mathbf{2}$ 4 **Hospital** 1 **Multi-flat Super Sport** buildings **Shopping centres** markets **Kindergartens** complex 6 3 $\mathbf{2}$ $\mathbf{1}$ 4

Parameters of buildings used for HomerPro simulations

Note: * - applying max of 1kW PV installed capacity for 5-15m2 of useful roof area

Different hourly load electricity profiles

Practical consumer needs satisfied by modelled and selected RTS systems:

- > Business and public segments all consumer electricity needs
- > Residential segment power required for lighting of general premises and elevators

Financial and operational assumptions

Investment and operational cost assumptions

Financial and economic assumptions

Principles of rooftop solar modelling with HomerPro

- Large number of iterative HomerPro software runs
- Rooftop solar (RTS) option is compared to base-case
- Base-case = the use of the grid option
- We structured RTS modelling and simulations to include and combine:
	- ˃ 3 remuneration schemes and
	- ˃ 3 different tariff rate levels

RTS remuneration schemes and tariff rate levels analysed

• Without net metering

> consumer is not paid for the surplus PV energy produced and sent to the grid

• Net metering (NEM)

> rate paid for unconsumed PV energy exported to the grid is equal to the retail end-user electricity tariff (i.e. the import rate is equal to the export rate)

Net billing

˃ export to the grid rate significantly differs from (and usually is considerably lower than) the import rate

Current tariffs

tariffs effective in year 2024 for the specific consumer category (business, public, residential)

• Average tariffs

˃ weighted-average end-user tariff of 0.032 USD/kWh for year 2024, which is the estimated average rate of the whole power market of Tajikistan

Switching values

˃ tariff levels at which the RTS system starts to be optimal (superior) compared to the current grid option, it signals the break-even tariff level for viable RTS deployment

RTS system options modelled

Business segment

Residential segment

Note: nm* - not meaningful in practice

Public segment

RTS modelling and simulation results

Funded by the European Union

Optimal RTS systems are very different

Key operational and economic parameters of optimal RTS systems

Comparison of switching and current tariff rates

Conclusions and further work

- Despite below cost-recovery level of average tariffs in Tajikistan, there are certain segments already, where RTS system deployment is financially feasible
- Business segment end-users have the most of identified financially feasible RTS options due to the highest tariff rate charged to this consumer category
- Current tariff level in public and residential segments is insufficient for financially feasible adoption of RTS. However, the rate gap of around 20% is manageable and could be absorbed in relatively short term
- Our ongoing work in Tajikistan: defining key financing scheme parameters, subsidy forms and proportions, selecting appropriate business model for RTS deployment, search for financing and implementation partners.

Factors of successful RTS integration in buildings

Factors

- Cost-reflecting electricity tariffs
- Regulatory framework and clarity
- Metering arrangements in place
- Subsidies and strong financial support
- Comprehensive and continuous technical assistance
- Dedicated financing products
- Suitable business model
- Technical and grid connection requirements

Results

- Increasing deployment and scaling-up of RTS
- Growth in market awareness, capacity building and user trust
- ˃ Financially attractive investments (<5 years payback)

Benefits

- Electricity cost savings
- Hedge against rising tariffs
- > Increased property values
- > Reduced CO2 emissions

Thank you for your attention!

Darius Krauciunas, Senior Expert in Energy Finance, SECCA *darius@tvarus.eu*

