

REGIONAL TRAINING ON MODEL-BASED INTEGRATED ENERGY AND CLIMATE ANALYSES Almaty, 11-13 December 2024

INTRODUCTION INTO ENERGY STATISTICS AND MAIN ENERGY INDICATORS

Alenka Kinderman Lončarević Expert in energy statistics, SECCA

intec

Introduction (1):

The most important/known OFFICIAL NATIONAL energy reports about the energy sector are:

- Annual statistical energy balance
- Monthly statistics on coal, electricity, natural gas, renewables
- Statistics on energy prices
- Statistics on capacities, etc.


The most general energy indicators that appear in reports:

- Energy intensities (per value-added, per capita)
- Energy dependency

Funded by

the European Union

- Energy efficiency of the power sector
- Share of RES in electricity generation

Introduction (1):

Energy statistics is a very complex and specific kind of statistics:

It is a statistic of all legal and private persons in a country

A unified approach to energy statistics activities is needed for various reasons:

- it helps policymakers in the decision-making process to be based on accurate, quality, timely, and consistent data;
- it reduces administrative workload in data collection, compilation, and dissemination;
- it reduces the appearance of errors and differences between similar datasets;
- it helps the general public to understand the energy situation in their country.

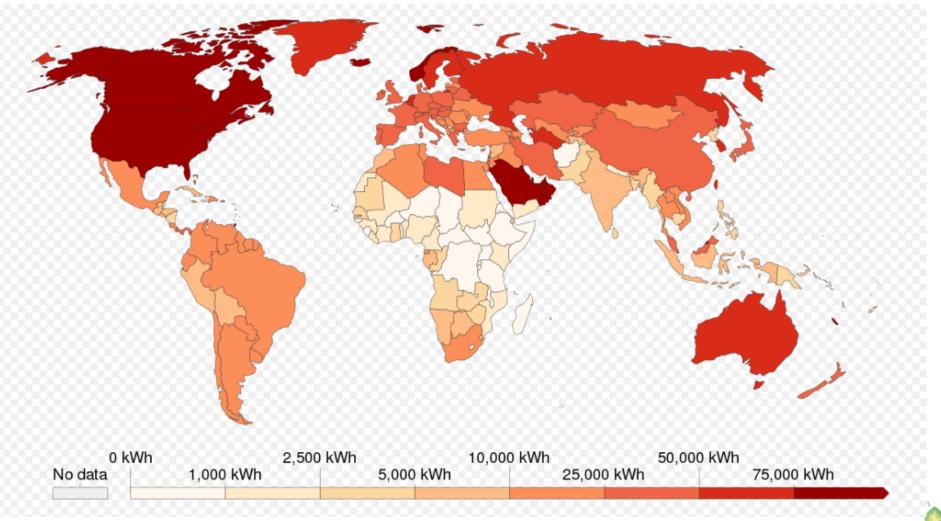
The unified approach enables benchmarking, monitoring, evaluation and verification of current situations and trends in the energy sector at local, national, regional, and global levels!!!

Introduction (2):

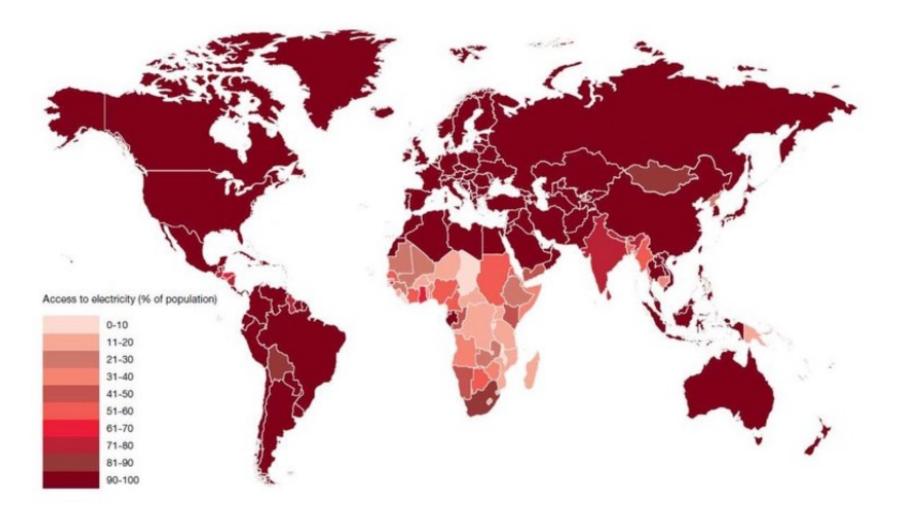
The institutional framework for energy statistics ensures the sustainability of producing energy statistics over time

An effective energy statistics system requires the existence of a strong legal framework complemented by appropriate institutional arrangements between all relevant stakeholders

The **legal framework** is a set of laws and regulations that specify the rights and responsibilities of organizations that collect, produce, disseminate, or use statistics or statistics outputs


The **institutional arrangements is** organization of the work on energy statistics among the relevant energy statistics stakeholders (coordination, divison of work, data sharing, planning of the new acttivities, consultancies

The most common energy statistics stakeholders: National Statistical Offices, Ministries responsible for energy sector, National Energy Agencies


Annual gross final electricity consumption per capita, kWh/capita

Access to electricity, pecentage of population %

Energy statistics is the key for energy policies and strategies

1. Understand situation and desired outcomes

• Do we really understand what the problem or issue is? Are you sure there is a gap? What policy or evidence is already out there & what are others doing? What outcome would indicate success ?

2. Develop scenario options

- Understand, quantify & analyze impacts, costs, risks & benefits of policy options, including on GHGs;
- Address evidence gaps & identify research & analysis required

3. Prepare implementation activities

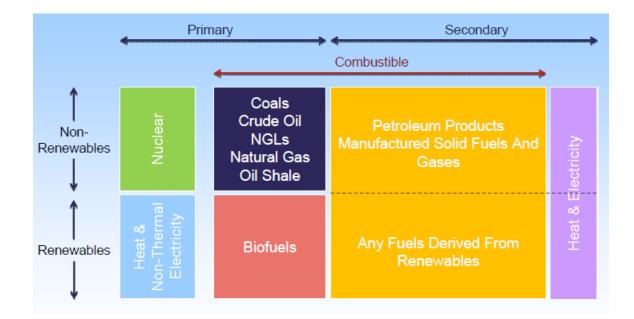
- Undertake pilots & collect good practice
- Benchmark against other schemes
- Put in place policy monitoring, evaluation & reporting mechanisms

4. Implementation, monitoring, revision

- Monitoring performance indicators and expected benefits
- Evaluation and reporting, eg. greenhouse gas emissions, energy efficiency improvement, RES shares

DEFINITIONS, MEASUREMENT UNITS AND CALORIFIC VALUES, DENSITIES

1. ENERGY PRODUCTS



Fossil Fuels and Renewable Energies

Energy products split:

- renewable/non-renewable
- primary / secondary
- combustible / non-combustible

How to measure Quantities and Heating values? Quantities: Natural Units

At the point of measurement of the fuel, the units should be the best suited to physical state (solid, liquid or gas)

This units are called natural of physical units

Solid fuels: kilograms or tonnes

Liquids and gases: liters or cubic meters

- **Electricity:** kilowatt–hours
- **Heat:** calories or joules*

Renewables: tones, m3, kWh,.....

*Heat from steam flows is rarly accurately measured but it tipically inferre from fuel used to produce it

How to measure Quantities and Heating values? Quantities: Energy Units

Natural units are often converted to a common unit to enable aggregations and comparisons between fuels, calculating indicators, estimating efficiencies, etc.;

The most often energy units arem egajoule or tonne of oil equivalent.

For thermal fuels, this requires a conversion factor that expresses the heat obtained from one unit of the fuel. This is called the calorific value (CV) of the fuel: *gigajoule/tonne for coal, megajoule/cubic metre for gas*.

Calorific Values vary between products and also countries!

Difference between Gross and Net Calorific Values

- Calorific values may be expressed in gross or net terms
- The difference is due to the latent heat of vaporization of the water produced during combustion
- IEA typically uses net calorific values (or lower heating values) in its energy balances. For reporting purposes, some data about energy products (e.g. manufactured gases) may be collected on a gross calorific value basis while other data (e.g. wastes and biogases) on a net basis
- Net calorific values are typically 5% to 6% less than the gross calorific value for solid and liquid fuels and about 10% less for natural gas

Coal and Coal Products

Coal and Coal Products

- Solid fuels are typically reported in thousand metric tonnes (kt)
- The range of calorific values may be hugely variable and differ from country to country depending on use
- For example, coal combusted in a power station will have completely different characteristics from coal used as a reductant in a steel-making process
- Calorific values for *each* country for *each* grade of coal (e.g. anthracite, coking, other bituminous, sub-bituminous, lignite) are needed
- Within *each* grade, the specific values for production, imports, exports, inputs to electricity/heat generation and coal used in coke ovens, blast furnaces, industry.... is needed
- Coal products such as patent fuel, coke oven coke, coal tar, BKB, and charcoal also have their own calorific values

Coal and Peat Calorific Values

	hig	gh		MJ/tonne	
	1	1	Coal Tar	30000 - 44000	<mark>Coal Tar</mark>
			Coking Coal	25000 - 33000	Coking Coal
ч			Patent Fuel	25000 - 32000	Patent Fuel
ALI			Coke Oven Coke	24000 - 32000	Coke Oven Coke
C <			Gas Coke	24000 - 32000	Gas coke
RIFI		L	Anthracite	22000 - 29000	Anthracite Other Diturning and Cool
CALORIFIC VALUE			Other Bituminous Coal	22000 - 29000	Other Bituminous Coal Sub Bituminous Coal
CA			Sub Bituminous Coal	16000 - 24000	Brown Coal Briquettes
			Bkb	15000 - 21000	(BKB)
	L		Peat	7000 - 13000	Peat
	lo	W	Lignite/Brown Coal	3000 - 18000	Lignite/Brown Coal

Country Specific Net Calorific Factors

	Australia	Austria	Belgium	Canada	Czech Republic	
Coking coal						Coking coal
Production	28500	-	-	24890	28621	Production
Imports	-	29074	29308	28329	27046	Imports
Exports	28500	-	29305	24890	27600	Exports
Coke ovens	28500	29074	29308	28329	29148	Coke ovens
Electricity generation	-	-	-	-	-	Electricity generation
Indu Niete the e				40/)	-	Industry Other uses
Othe Note the s	significant	amer	ence (1	14%)	29148	
other between i	indigenou	is proc	luction	and		
Dred	-			ana		Other bituminous coal
Impo im	ported co	okina a	coal			Production
Exports	25700		25781	25514		Imports
Coke ovens	20/00	-	20/01	20014	-	Exports Coke ovens
Electricity generation	27000	27804	25056	25514	-	Electricity generation
Industry	25700	28778	29308	25514		Industry
Other uses	25700	28066	25781	25514	-	Other uses
Other uses	23700	20000	25701	20014	-	
Sub-bituminous coal						Sub-bituminous coal
Production	18478	-	21967	17799	23857	Production
Imports	-	22200	-	17799	28175	Imports
Exports	-	-	18662	17799	24658	Exports
Electricity generation	18914		-	17799	23500	Coke ovens
Industry	19195	22200	18900	-	22221	Electricity generation
Other uses	18478	22200	21967	17799	22493	Industry Other uses

Natural gas

There are 4 main flows to be tracked in energy balance

Data are reported in two units:

- natural units: million cubic meters (mil. m3)
- energy units: terajoules (TJ), kWh
- Calorific values are typically reported in MJ/m3
- *Net calorific value* of natural gas is on average 10% less than the gross value.
- Warning: according to common practice many organisations report calorific value or natural gas in gross calorific terms.

Manufactured gas

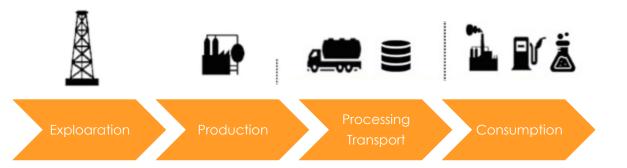
Quantities of gases have been historically collected in terms of their gross energy (heat) content in terajoules (TJ). In energy balance converted values to net values are used Calorific values of fuels are usually metered in laboratories

Difference between Gross and Net Calorific Values

Gas	Gross to Net ratio
Gas-work gas	0.9
Coke-oven gas	0.9
Blast-furnace gas	1.0
Oxygen steel-furnace gas	1.0

Gross-to-net ratio Gas- work gas Coke-oven gas Blast-furnace gas Oxygen steel-furnace gas

Oil and petroleum products

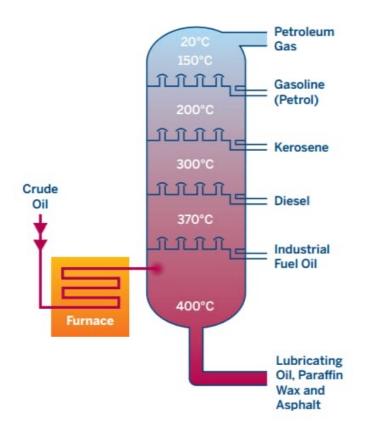

A few units are used within the oil industry:

• <u>mass (weight)</u> using the metric tonne (or tonne)

• <u>volume measured</u> by the liter (I), the barrel (bbl) or cubic meter (m3)

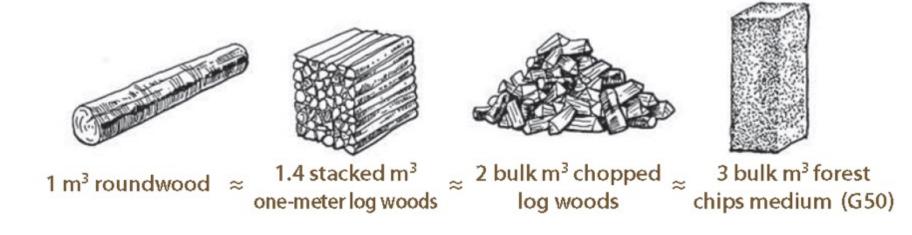
To convert between mass and volume it is important to know the *specific gravity* or *density* of the liquid

Net calorific values are typically 5% to 6% less than the gross calorific value in the case of oil and petroleum products



Petroleum products

• are produced in refining processes using crude oil


Petroleum products	Europe kJ/kg	North America kJ/kq	Pacific kJ/kg
Refinery gas	49 500	48 100	48 100
Ethane	49 500	49 400	49 400
Liquefied petroleum gases	46 000	47 300	47 700
Motor gasoline	44 000	44 800	44 600
Aviation gasoline	44 000	44 800	44 600
Gasoline type jet fuel	43 000	44 800	44 600
Kerosene type jet fuel	43 000	44 600	44 500
Kerosene	43 000	43 800	42 900
Gas/diesel oil	42 600	42 600	42 600
Residual fuel oil	40 000	40 200	42 600
Naphtha	44 000	45 000	43 200
White spirit	43 600	43 000	43 000
Lubricants	42 000	42 000	42 900
Bitumen	39 000	40 000	38 800
Paraffin Waxes	40 000	40 000	40 000
Petroleum Coke	32 000	32 000	33 800
Non-specified petroleum products	40 000	40 000	40 000

Solid cubic meter (scm): 1 m³ solid wood, commonly used for timber (roundwood directly from forests) **Stacked cubic meter** (stere): 1 m³ stacked wood pieces with a length of 1 m, 50, 33 or 25 cm, depending on the heating system; commonly used for fuel wood **Bulk cubic meter** (bcm): 1 m³ loosely poured wood

Rough calorific value (Croatia): 1 m³ = 10000 MJ (Net calorific value)

Renewables - SOLAR HEAT in "SOLAR PANNELS"

How solar heat can be used?

- to heat swimming pools (normally unglazed collectors),
- for production of domestic hot water (DHW-Systems)
- <u>for domestic hot water production and space heating</u> (Combi Systems)

How to calculate heat from solar water heaters? IEA/ESTIF method:

- Simply calculate heat delivered from solar heaters
- Data for the calculation can be easily collected
- Takes into account all systems relevant, for the time being
- Follows the EUROSTAT/IEA standards

Renewables - SOLAR HEAT in "SOLAR PANNELS" IEA/ESTIF method 1:

Calculation methodology 1: As a function of the installed **solar collector area**:

Un-glazed collectors:0.29 * H0 * AaGlazed collectors in DHW systems:0.44 * H0 * AaGlazed collectors in combi-systems:0.33 * H0 * Aa

Being: H0: Annual global solar irradiation in kWh/m² Aa : Collector area in m²

The only information needed to calculate used solar heat is **the surface are of the sollar collector**

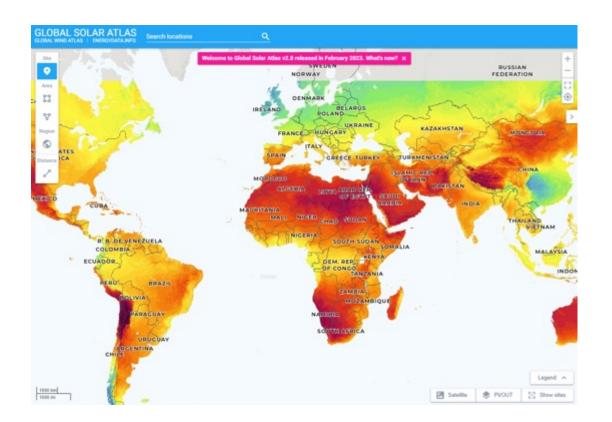
Renewables - SOLAR HEAT in "SOLAR PANELS" IEA/ESTIF method 2:

Calculation methodology 2: As a function of the *installed collector nominal thermal power*:

Un-glazed collectors:0.42 * H0 * PnomGlazed collectors in DHW systems:0.63 * H0 * PnomGlazed collectors in combi-systems:0.47 * H0 * Pnom

Being:

H0: Annual global solar irradiation in kWh/m²


Aa : Collector surface area in m²

Pnom : Nominal thermal power output of collector in kW

Annual solar irradiation Global solar atlas - https://globalsolaratlas.info/map

Exercise:

Estimate solar heat use in glazed collector in a household in your town based on assumed following data:

Aa (collector area): 2 m² H0 (annual global solar irradiation): XX* kWh/m² * find in atlas!

Formula, IEA/ESTIF method 1: Solar heat in glazed collectors: 0.44 * H0 * Aa Result: _____kWh/year

Do you know what is annual electricity consumption in your household in kWh?

Renewables - SOLAR HEAT in "SOLAR PHOTOVOLTAICS" Global solar atlas - https://globalsolaratlas.info/map

- Typically, residential solar PV vary from small-scale systems of around 1–3 kW, suitable for low-energy households, to more robust systems within the average home solar system size range of 5–10 kW for larger homes with greater energy demands
- Global Solar Atlas calculates annual electricity generation for location based on the installed capacity of solar PV

Renewables - SOLAR HEAT in "SOLAR PHOTOVOLTAICS" Global solar atlas - https://globalsolaratlas.info/map

Annual averages

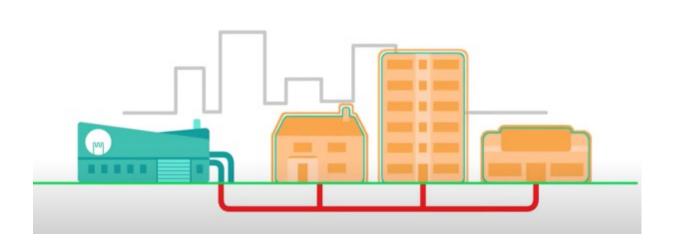
Example: Zagreb, Croatia

Electricity generation in solar PV, capacity 1 kW

Exercise:

Estimate annual electricity generation from solar PV in a household in your country/town. The installed capacity of solar collector is 1 kW

Result:


HEAT - DISTRICT HEATING SYSTEMS (DHS)

District heating (heat networks) is a system for distributing heat generated in a centralized location through insulated pipes for residential and commercial heating requirements such as space heating and water heating

How do we estimate HEAT supply data for households, services, and industry?

Can heat suppliers distinguish economic activities and households?

Challenges: usually heat delivered to endconsumers is not metered, consumption is estimated based on some activity data, square meters, and persons.....

HEAT "COMUNAL HEATING SYSTEMS" or "BOILER HOUSES"

Communal heating systems are shared systems between several apartments. Usually, the heat is produced from natural gas/fuel oil in a common boiler in the building, and heat is delivered through pipe to apartments

Challenges:

How to appropriately identify all communal heating systems? Who is responsible for registering of such type of service?

How to appropriately report the heat that is delivered to the property? Very often there is no metering devices!!!

Measurement units

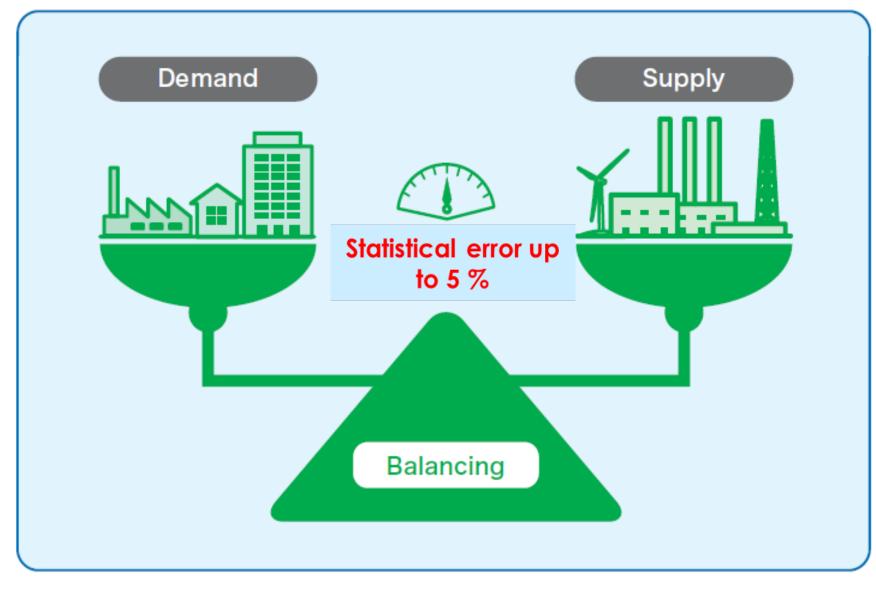
In addition:

kWh – kilowatt-hour

- kJ kilojoule
- kcal kilocalorie
- kgoe a kilogram of oil equivalent
- Btu British thermal unit

1 kcal = 4,185 kJ 1 Btu = 1,055 kJ

1 kgoe = 41,88 MJ


Unit Converter

Convert between units of energy, mass and volume commonly used in the energy sector

	lea 🔈				
elow					
~	Unit cubic metre (m3)				
	elow				

1000 litres (l) 35.31 cubic feet (ft3) 264.2 US gallons (gal. US) 220 UK gallons (gal. UK) 6.290 barrels (bbl)

2. ANNUAL ENERGY BALANCE

Energy balance and related indicators

1. Primary energy supply:

Production, imports, exports, stock changes, total primary energy supply Total primary energy supply intensity; Import dependency

2. Transformations, energy sector consumption, and losses:

Transformations (electricity, petroleum products, ...), own use in the energy sector, losses in transformation and distribution, available for energy consumption

RES shares in electricity and heat plant, transformation efficiencies

3. Final and non-final energy consumption:

Manufacturing, construction, non-fuel mining, transport, other: household, services, agriculture and forestry, fishing, non-specified;

Non-final energy consumption

Efficiencies in the final energy consumption sectors

International recommendations for energy statistics

https://www.iea.org/reports/energy-statistics-manual-2 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics___an_overview_

Simple energy balance matrix – 1. & 2. parts Total energy supply, Transformation, Losses, Energy Sector Own Use

Uzbekistan

Terajoules

	Primary coal and peat	Coal and peat products	Primary Oil	Oil Products	Natural Gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewables
2020											
Primary production	61601		126067		1522987	*959	-	. 18054		1729669	19013
Imports	47244	1400	30713	40969		1473	-	. 18746		140545	1473
Exports	-24			-2372	-93387	-65		9672		-105520	-65
International marine bunkers											
International aviation bunkers				*-4894						*-4894	
Stock changes	12806		140	2664	20166					35776	
Total energy supply	121627	1400	156920	36367	1449767	2368		. 27127		1795576	20422
Statistical difference	8896	1400	65	1507	26700	*2		1	64343	102913	18056
Transfers											
Transformation	-58688	1130	-156238	141969	-492944			. 203931	148714	-212128	
Electricity plants	-31040			-64				. 11231		-19872	
CHP plants	-26603			-5715	-457069			. 210174	74485	-204728	
Heat plants				-992	-21395			. *-17474	74229	34367	·
Coke ovens							-				
Briquetting plants	-1045	1130								85	i
Liquefaction plants											
Gas works											
Blast furnaces											
NGL plants & gas blending											
Oil refineries			-156238	148740						-7498	
Other transformation					-14481					-14481	
Energy industries own use	-290		-131	-5574	-89321			8125	0	-103441	-

Primary energy production(PEP)

Total energy supply (TES)

RES shares, Efficiency of transformations

Efficiency of energy systems (1)

Power generation

 $\eta = \frac{Power \ output}{Fuel \ input}$

Efficiency of energy systems (2)

Power and heat generation

$= \frac{Power and heat output}{Fuel input}$

Efficiency of energy systems (3)

Heat generation

 $\eta = \frac{Heat \ output}{Fuel \ input}$

Simple energy balance matrix – 3. part Final energy and non-energy consumption

	Primary coal and peat	Coal and peat products	Primary Oil	Oil Products	Natural Gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewable
2020											
Final consumption	53737	1130		171056	806693	*2366		187024	76863	1298869	*2366
Final energy consumption	53737	1130		156922	779397	*2366		187024	76863	1257439	*2366
Manufacturing, const., mining	9635			4562	162865			71036	17970	266068	
Transport	157			126502	112574			3809		243041	
Road				121832	95749					217582	
Rail	157			4402				1338		5898	
Domestic aviation				*199						*199	
Domestic navigation											
Pipeline transport					16824			2233		19057	
Transport, n.e.s				69				238		307	
Other	43945	1130		25858	503958	*2366		112179	58893	748330	*2366
Agriculture, forestry, fishing	643			147	9767			33129	2387	46072	
Commerce, public services	4261			6676	90244			18860		120041	
Households	10893			17959	364572			55978	50121	499523	
Other consumers	28148	1130		1077	39376	*2366		4212	6385	82694	*2366
Non-energy use				*14134	27296					41429	

Uzbekistan

<u>The most common energy</u> indicators:

- Energy intensities,
- Energy efficiency,
- Demand forecast,
- Energy poverty
- Consumer protection (in case of crisis, natural disasters....)
- Price impacts

