

REGIONAL TRAINING ON MODEL-BASED INTEGRATED ENERGY AND CLIMATE ANALYSES Almaty, 11-13 December 2024

Alenka Kinderman Lončarević Expert in energy statistics, SECCA

Additional tips for energy balance

Part 2. Transformations

• Sign "-" means fuel input into the transformation process, while sign "+" means the output

Terajoules											
	Primary coal and peat	Coal and peat products	Primary Oil	Oil Products	Natural Gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewables
202	0						2				
Transformation	-58688	1130	-156238	141969	-492944	۰. ۱	-	203931	148714	-212128	
Electricity plants	-31040)		-64				. 11231		-19872	
CHP plants	-26603			-5715	-457069)		210174	74485	-204728	
Heat plants	· .			-992	-21395	j		. *-17474	74229	34367	

Uzbekistan

- For example, in "Electricity plants" flow:
 - Fuel input in the electricity plant is -31040 TJ of primary coal and -64 TJ of oil products, while
 - Electricity (energy) output is 11231 TJ

Exercize (1/3) – recalculating volume to mass units and vice versa

Energy statistics (balance) usually report data on gas, diesel, and diesel trade production and consumption in mass units like "kg" or "tones"

Customers buy gas diesel and diesel in volume units: "litres"

In the case of recalculating litres to kg and vice versa, it is necessary to have available density of the fuels

Density = Mass / Volume

https://unstats.un.org/unsd/energystats/methodology/d ocuments/IRES-web.pdf

Density diesel = 0,85 kg/litre Density gasoline = 0,742 kg/lit

Exercize (2/3) – recalculating volume to mass units and vice versa

<u>Task:</u> Calculate the mass of the one-filled car reservoir of 50 litres or how many kilograms have 50 litres of gasoline and 50 litres of diesel?

Answer:

50 liters of gasoline = ??? kg of gasoline 50 liters of diesel = ??? Kg of gasoline

<u>Reminder</u> Density = Mass / Volume

Density diesel = 0,85 kg/litre Density gasoline = 0,742 kg/lit

Exercize (3/3) – recalculating volume to mass units and vice versa

<u>Task:</u> Calculate the mass of the one-filled car reservoir of 50 litres or how many kilograms have 50 litres of gasoline and 50 litres of diesel?

Answer:

50 liters of gasoline = 50 lit *0,724 kg/lit = 37,1 kg of gasoline 50 liters of diesel = 50 lit * 0,85 kg/lit = 42,5 kg of diesel

<u>Conclusion</u> The same volume of diesel is 14,5 % havier then gasoline

Exercise (4/4) – recalculating volume to mass units and vice versa

<u>Task 1:</u> Calculate the mass of the one-filled car reservoir of 50 litres or how many kilograms have 50 litres of gasoline and 50 litres of diesel?

Answer:

50 liters of gasoline = 50 lit *0,724 kg/lit = 37,1 kg of gasoline 50 liters of diesel = 50 lit * 0,85 kg/lit = 42,5 kg of diesel

<u>Conclusion</u> The same volume of diesel is 14,5 % havier then gasoline.

Exercise (4/4) – recalculating volume to mass units and vice versa

Task 2: Recalculate mass of diesel and gasoline into common energy unit?

Answer:

50 kg gasoline = XXXX MJ 50 kg diesel = XXXX MJ

Open IRES manual and read

<u>Conclusion</u> 1 kg of gasoline = XXXXMJ 1 kg of diesel = XXXX MJ

