

REGIONAL TRAINING ON MODEL-BASED INTEGRATED ENERGY AND CLIMATE ANALYSES

Almaty, 28-31 January 2025

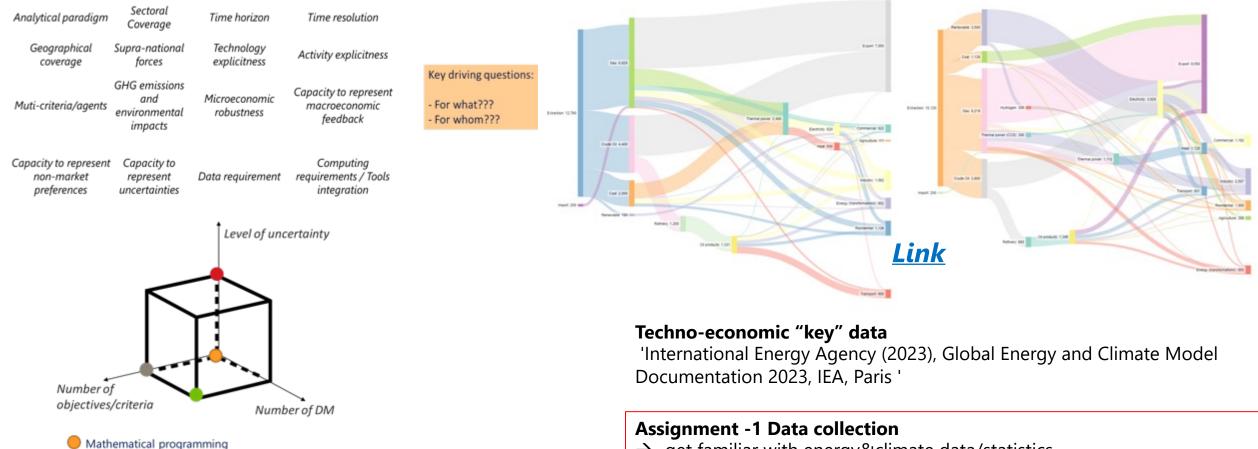
What we have done and where we are heading

Rocco De Miglio Expert in energy modelling, SECCA

Energy analyses VS (local) decision-making

Training sessions for country "modelling units"

By the end of the sessions the trainees will have a good understanding of the theoretical background of complex integrated energy and climate analyses, will be able to critically analyse model-based studies and reports and to formulate comments, and will be able to organise data and key factors for simple national and regional modelling exercises


Workstream / Tasks	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Energy systems modelling								1	
Establishing local "modelling units"								1	
Introductory meeting (remote)									
Preparation of the training sessions									
Regional seminar/training 1								1	
Regional seminar/training 2								l l	
Regional seminar/training 3								1	
Continuous dialogue and co-working									

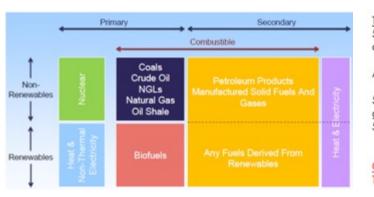
			PreWorkshop	Workshop1	Homework	Workshop2	Homework	Workshop3	Homework	Total
Name	Position	N. days			up to		up to		up to	
XYZ	Junior country expert - X	Home+Field		4	5	3	5	4	4	25

Session1 (Sept 2024) - recap

- \rightarrow get familiar with energy&climate data/statistics
- \rightarrow get familiar with the data gaps
- \rightarrow understand the challenges/issues of the national system

Game theory

Stochastic programming


Multi-criteria analysis / Multi-objective programming

Session2 (Dec 2024) - recap

Presentation of Assignment -1 (country)

- \rightarrow receive comments and suggestions
- \rightarrow share experience with colleagues

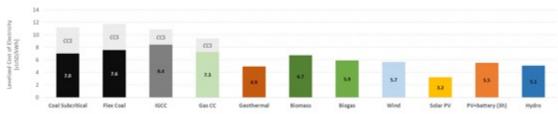
Energy statistics – Fundamentals and exercises

Task: Calculate the mass of the one-filled car reservoir of 50 litres or how many kilograms have 50 litres of gasoline and 50 litres of diesel?

Answer:

50 liters of gasoline = 50 lit *0,724 kg/lit = 37,1 kg of gasoline 50 liters of diesel = 50 lit * 0,85 kg/lit = 42,5 kg of diesel

Conclusion


The same volume of diesel is 14,5 % havier then gasoline

		COA	GAS	OIL	DSL	KER L	PG	GSL	NAP	HFO	OPP	NUC	BIO	HYD	VIN	SOL	SLU	HET	ELC	тот
			Natural Gas	Crude Oil	Diesel oil	Kerosenes L		Motor spirit	Naphtha	Heavy Fuel Oil	Other Petroleum Products		Biomass		Wind energy	Solar energy	Industrial Vastes		Electrici 9	it Total
	PRIMARY																			
MIN	Domestic Supply	8098	7899	5373	0	0	0	0	0	() 0	9900	3016	1005	754	251		1	(0 36297
IMP	Imports	6463	13292	27649	4410		652	1320				0	113		0	. 0				S8 60995
EXP	Exports	-1147	-2516	-3297	-3366	-591	-389	-3001				0	-72	0	0	. 0	. () (27
TPS	Total Primary Supply	13414	18675	29724	1044	619	263	-1681	565	-319	288	9900	3057	1005	754	251	0	0	4	1 ****
	CONVERSION																			
ESC	Energy Sector Consumption	-58	-793		-33	0	-1058	-329	1	-412	2	0	-4				4	2	1	0 -2689
ELC	Electricity Plants	-9598	-5636		-60		-48			-1050		-9900			-754	-136	-33			81 -15671
HPL	Heat Plants	-161	-301		-15		0			-30		0	-140				-2	65	÷ .	0 5
REF	Petroleum Refineries			-31736	11403	1939	2173	6710	1941											-402
	Total Conversion	-9817	-6730	-31736	11295	1939	1067	6381	1939	3078	2529	-9900	-848	-1005	-754	-136	-36	2396	1158	1
	FINAL																			
RSD	Residential	357	5160		1724		380	6	0	3	1 2	0	1194		0	100	. () 865		72 12837
COM	Commercial	57	1752		738		63	11	0	35		0	52		0	15	i	1 255		
IND	Industry	1897	4437		597	73	286	16	88			0	722		0	· 0	117	r 634	408	
AGR	Agriculture	44	201		733		32	3	0	27		0	63		0	. 0) 1		19 1141
TRA	Transport	1	21		7713	2095	188	4788	0	66	S0	0	161	0	0	· 0	. () () 26	
OTH	Other	1189	0		· 0	0	0	0	· 0	· ()' 0	0	0	0	0	0	. () 621	7 65	
NEN	Non Energy	52	634		153	10	400	6	1798			0	0	0	0	0			1	0 4759
BNK	Bunkers	0	0		294	0	0	0	0	1804		0	0	0	0	0	. () (1	0 2111
	Total Final Consumption	3597	12205		11952	2328	1350	4831	1887	2644	2000	0	2192	0	0	115	118	2396	10423	3 ****

Funded by the European Union

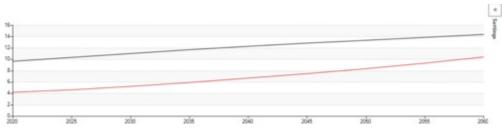
Simple LCOE calculation (.xls)

https://rezoning.energydata.info/

Assignment -2 Country Policies and Measures

- \rightarrow get familiar with the existing energy&climate PaMs
- \rightarrow get familiar with the future plans
- \rightarrow understand the challenges/issues of the national system
- \rightarrow propose hypothetical instruments

Session3 (Jan 2025) - agenda


Design and implementation of National Energy and Climate Plan (NECP) in EU Member States (EU MS) in Energy Community Contracting Parties (EnC CP)

		ction A DNAL PLAN	Section B ANALYTICAL BASIS						
ENERGY UNION DIMENSIONS		and Process for ing the Plan							
Decarbonisation									
Energy efficiency	2. National		4. Current	5. Impact assessment of					
Energy security	objectives and targets	3. Policies and measures	situation and reference	policies and measures					
Internal market			projections	(incl.					
R&I and Comp.ness				investment)					

Presentation of Assignment - 2 (country)

- \rightarrow compare with the NECP experience
- \rightarrow receive comments and suggestions
- \rightarrow share experience with colleagues
- \rightarrow discuss the specific "modelling" and "data" requirements to translate/explore the PaM

Simple demand projections calculator (.xls)

Timeslices - Fractions (.xls)

	Basic settings	0.25	0.25	0.25	0.25		0.17	0.17	0.17	0.17	0.17	0.17	
	Demand/Timeslice	R	5	F	w		N	L	м	D	A	E	
1	Residential-Water heating	0.25	0.25	0.25	0.25	100	0.083	0.250	0.167	0,167	0.167	0.167	10
2	Residential-Space cooling	0.25	0.50	0.25	0	100	0.000	0.200	0.200	0.200	0.200	0.200	16
3	Residential-Space heating	0.29	0.00	0.29	0.42	100	0.167	0.167	0.167	0.167	0.167	0.167	10
4	Residential-Lighting	0.25	0.17	0.25	0.33	100	0.083	0.250	0.167	0.083	0.167	0.250	10
5	Residential-Appliances	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	10
6	Residential-Cooking	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	10
7	Residential-Clothes washing	0.25	0.25	0.25	0.25	100	0.000	0.250	0.250	0.250	0.250	0.000	10
8	Residential-Dish washing	0.25	0.25	0.25	0.25	100	0.000	0.250	0.250	0.250	0.250	0.000	10
9	Residential-Refrigeration	0.25	0.25	0.25	0.25	1.00	0.167	0.167	0.167	0.167	0.167	0.167	10
10	Tertiary-Public-Water heating	0.25	0.25	0.25	0.25	1.00	0.083	0.250	0.167	0.167	0.167	0.167	10
11	Tertiary-Public-Space cooling	0.25	0.50	0.25	0.00	1.00	0.000	0.200	0.200	0.200	0.200	0.200	1
12	Tertiary-Public-Space heating	0.29	0.00	0.29	0.42	1.00	0.167	0.167	0.167	0.167	0.167	0.167	10
13	Tertiary-Public-Lighting	0.25	0.17	0.25	0.33	1.00	0.083	0.208	0.208	0.208	0.208	0.083	1
14	Tertiary-Public-Appliances	0.25	0.17	0.25	0.33	1.00	0.083	0.208	0.208	0.208	0.208	0.083	1.
15	Tertiary-Public-Cooking	0.25	0.25	0.25	0.25	1.00	0.000	0.200	0.200	0.200	0.200	0.200	1.
16	Tertiary-Public-Refrigeration	0.25	0.25	0.25	0.25	100	0.167	0.167	0.167	0.167	0.167	0.167	1
17	Tertiary-Service-Water heating	0.25	0.25	0.25	0.25	100	0.083	0.250	0.167	0.167	0.167	0.167	1
18	Tertiary-Service-Space cooling	0.25	0.50	0.25	0.00	100	0.000	0.200	0.200	0.200	0.200	0.200	1
19	Tertiary-Service-Space heating	0.29	0.00	0.29	0.42	1.00	0.167	0.167	0.167	0.167	0.167	0.167	1
20	Tertiary-Service-Lighting	0.25	0.17	0.25	0.33	1.00	0.083	0.208	0.208	0.208	0.208	0.083	1
21	Tertiary-Service Appliances	0.25	0.17	0.25	0.33	1.00	0.083	0.208	0.208	0.208	0.208	0.083	10
22	Tertiary-Service-Cooking	0.25	0.25	0.25	0.25	1.00	0.000	0.200	0.200	0.200	0.200	0.200	10
23	Tertiary-Service-Refrigeration	0.25	0.25	0.25	0.25	1.00	0.167	0.167	0.167	0.167	0.167	0.167	1
24	Street Lighting	0.25	0.17	0.25	0.33	1.00	0.250	0.167	0.083	0.056	0.167	0.278	1.
25	Industry	0.25	0.19	0.25	0.31	1.00	0.167	0.167	0.167	0.167	0.167	0.167	10
26	Agriculture	0.25	0.25	0.25	0.25	1.00	0.042	0.208	0.250	0.250	0.208	0.042	10
27	Transport	0.25	0.25	0.25	0.25	100	0.083	0.208	0.208	0.208	0.208	0.083	6

Assignment - 3 Country Energy Note/Brief

Session3 - Next steps

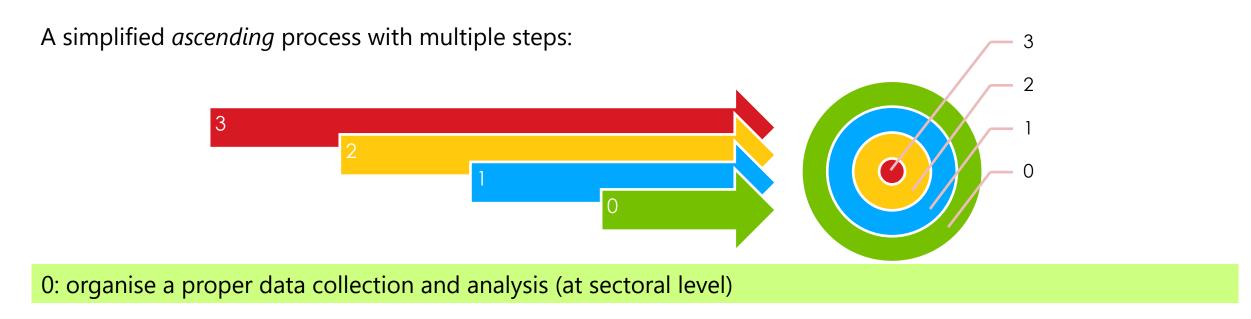
Purpose of the final assignment

- To demonstrate the young professional's new knowledge and skills (understanding of the training sessions)
- To apply "theoretical" knowledge to practical problems (country-specific)
- To analyse, interpret, or evaluate information critically
- To present well-reasoned / structures arguments or proposals (deliverable)

Context, problems statement and key issues to investigate, proposed instruments and goals, methodology and data requirements / gaps, role of stakeholders involved, areas for future research or action, etc.

To provide proposals and ideas for **future** developments of country analyses and tools (next phase)

Weaknesses / Hot topics


Country-specific / Multi-regional CA

Need for Integrated Analysis (against stand- alone/sectoral analyses)	Energy security	Energy efficiency measures	Advanced Technology		
"Watergy" (integration water- energy)	H2 market (I/E) Promotion of H2 domestic use	Integration with power system analyses (renewables)	Regional integration – cooperation Trades / Trading schemes		
International funds (eg Belt and Road Initiative)	Risks (CBAM)	Tariffs (energy subsidies)	Variants/Uncertainties (prices, technologies, targets)		

Modelling in energy&climate policy development

- $0 \rightarrow 1$: move towards a system-oriented approach and a more explicit representation of the key factors involved
- 1 \rightarrow 2: design scenarios to explore different combinations of factors (eg goals, policies, uncertainties)

2 \rightarrow 3: integration of non-energy sectors/components to consider multiple dimensions of the sustainability of the strategies.

Training sessions for country "modelling units"

What are your critical strategic questions in the energy&climate domain? The SECCA project can help you formulating and investigating them

Think ''out of the box''

Evidencebased decision making

Environment for Dialogue / Cooperation / Transparency

Inter- and Transdisciplinarity

THANK YOU!

Eng. Rocco De Miglio Energy systems modeller and analyst

