



### КРУГЛЫЙ СТОЛ

Развитие малой гидроэнергетики в Кыргызстане: предпринятые первые шаги

г. Бишкек, 4 февраля 2025 г.

Результаты предварительного технико-экономического обоснования для Малой ГЭС Каракол-1

Нугзар Хаиндрава Руководитель рабочего направления, эксперт по финансированию ВИЭ, SECCA









## Цель проекта

Разработка комплексного предварительного технико-экономического обоснования, в котором рассматриваются различные варианты строительства малой гидроэлектростанции «Каракол-1», расположенной в Ак-Суйском районе Иссык-Кульской области Кыргызской Республики, и служащего ориентиром для заинтересованных сторон путем:

- □ Охвата всех важнейших аспектов проекта, включая:
  - Техническую осуществимость
  - Экономическую эффективность
  - Экологическую устойчивость
  - Соблюдение законодательства
- Предоставления заинтересованным сторонам практической информации и структурированной основы для принятия решений
- □ Внедрения передового опыта для обеспечения последовательности, качества и актуальности предварительных технико-экономических обоснований в будущем, способствуя улучшению планирования и реализации проектов в энергетическом секторе





## Содержание предварительного технико-экономического обоснования

#### Contents

| Contents                                                                                               |           |
|--------------------------------------------------------------------------------------------------------|-----------|
| Executive summary                                                                                      |           |
| Introduction                                                                                           |           |
| Objective of the Study                                                                                 |           |
| General information about the region of the SHPP location                                              |           |
| History of the "Karakol" Small Hydropower Plant                                                        |           |
| Condition of existing hydraulic and energy structures                                                  |           |
| Natural and technical characteristics of the project site                                              |           |
| Location of the construction area                                                                      |           |
| Hydrological characteristics of the Karakol River                                                      | 1         |
| Climatic Characteristics of the Construction Area                                                      |           |
| Air Temperature                                                                                        |           |
| Precipitation                                                                                          |           |
| Wind                                                                                                   |           |
| Soil freezing                                                                                          |           |
| Water Regime                                                                                           |           |
| Standard and variability of annual discharge.                                                          |           |
| Intra-Annual Flow Distribution                                                                         |           |
| Maximum Water Discharge                                                                                |           |
| Minimum Water Discharges                                                                               |           |
| Solid Flow                                                                                             |           |
| Geological and Geotechnical Assessment of the Project                                                  |           |
| Description of the Lithological Structure of Construction Sites                                        |           |
| Source data for the project                                                                            | 3         |
| Selection of the Hydropower Plant Layout                                                               |           |
| Description of Evaluated Options                                                                       | 3         |
| Comparative Economic Analysis of Selected Options                                                      | 3         |
| Justification of the design capacity (water-energy calculation for the selected alignment)             | 1         |
| Forecast and Assessment of Environmental Impact During Construction and Operation of th<br>Activities. | e Propose |
| Assessment of Potential Emergency Situations                                                           |           |
| Assessment of the Social Impacts of the Project                                                        |           |
| Comprehensive Environmental Impact Assessment.                                                         |           |
| Potential Environmental Impacts:                                                                       |           |
|                                                                                                        |           |

| Conclusions on the Environmental Impact Assessment           | 4 |
|--------------------------------------------------------------|---|
| Selection of design option with development of general plans | 4 |
| Option 1                                                     |   |
| Option 2                                                     | 4 |
| Annual Electricity Generation Calculation                    | s |
| STRUCTURES OF THE SHPP "KARAKOL-1"                           | s |
| Head water intake structure                                  | 5 |
| Sedimentation tank of the SHPP "KARAKOL-1"                   | s |
| Derivation channel with structures.                          | 5 |
| PRESSURE BASIN WITH SHPP STRUCTURES                          | 5 |
| SHIPP BUILDING                                               | s |
| Electromechanical equipment                                  | 6 |
| Mechanical equipment                                         | 6 |
| Scope and specification of supply                            | 6 |
| Turbine selection                                            | 6 |
| Turbine speed selection                                      | 6 |
| Turbine sizing and layout                                    | 6 |
| Mechanical Balance of Plant                                  | 6 |
| Risks and risk mitigants of oil spillage into the river      |   |
| Electrical equipment                                         |   |
| Main Electrical Connection Diagram of the SHPP               |   |
| Economic Analysis of the Karakol-1 SHPP                      |   |
| Objective of the economic analysis.                          | 7 |
| Economic analysis                                            | 8 |
| Conclusion                                                   |   |
| Capital Investment                                           |   |
| Operational and Maintenance Costs                            | 8 |
| Revenue Generation                                           |   |
| Economic and Social Benefits                                 | 8 |
| Financial Metrics and Viability                              | 8 |
| Financial Analysis                                           | 8 |
| Risk Assessment and Mitigation Strategies.                   | 8 |
| Water Flow Variability                                       |   |
| Construction Delays                                          | 8 |
| Environmental Risks                                          | 8 |

| Market Risks                                                                                                         | 89  |
|----------------------------------------------------------------------------------------------------------------------|-----|
| egal Framework                                                                                                       | 89  |
| Regulatory Legal Framework for the Energy and Renewable Energy Sector                                                | 91  |
| Mechanisms for Implementing Renewable Energy Projects                                                                | 93  |
| Tariff Policy                                                                                                        | 95  |
| GO/NO-GO Decision Matrix for Small Hydropower Plant (Timeline-Based)                                                 | 96  |
| Recommendation to take into consideration while preparing the pre feasibility studies (special attention to be paid) | 99  |
| Survey Section                                                                                                       | 99  |
| Power Justification and Hydroenergy Calculations                                                                     | 100 |
| SHP Building                                                                                                         | 100 |
| Electrical Section                                                                                                   | 101 |
| Key Points for Selecting Hydro Turbines                                                                              | 101 |
| Quality of Hydro Turbines in Electricity Generation                                                                  | 102 |





### Определение речного бассейна

Речной бассейн для предлагаемого проекта был выбран при поддержке Фонда зеленой энергетики Кыргызстана, что обеспечивает соответствие приоритетам устойчивой энергетики.

Первоначальная Малая гидроэлектростанция (МГЭС) «Каракол» была введена в эксплуатацию в 1948 году и функционировала до 1970 года, демонстрируя пригодность этого места для выработки гидроэнергии по опыту прошлых лет.

#### Стратегическое расположение:

- Расположена в 1 километре от областного центра города Каракол
- Удобный доступ по асфальтированной дороге, которая также соединяется с городским горнолыжным курортом
- Близость к инфраструктуре снижает логистические трудности и повышает осуществимость проекта

Данная площадка обеспечивает оптимальное сочетание доступности, оправданности, с точки зрения опыта прошлых лет, а также природных ресурсов для успешного развития новой МГЭС «Каракол-1»



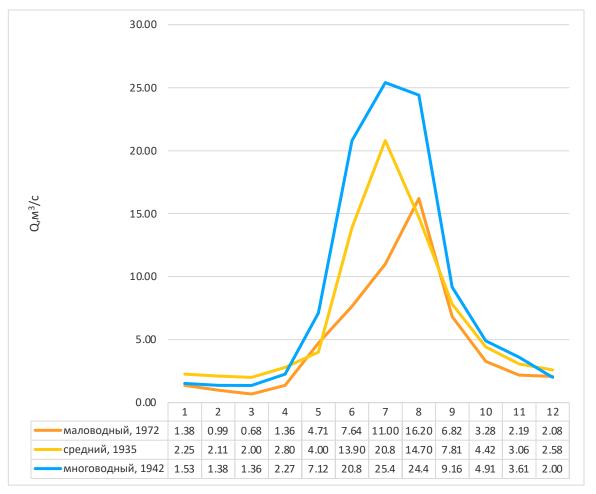


## Посещение объекта

Эксперты проекта SECCA и представитель Фонда зеленой энергетики Кыргызстана посетили проектную площадку Малой гидроэлектростанции (МГЭС) «Каракол-1»










## Водный режим

Среднемесячные сбросы реки Каракол в устье в период межени составляют от 4,42 до 2,0 м³/с, а в период половодья — от 2,8 до 20,8 м³/с в среднем за год

За период наблюдений с 1932 по 1992 год наибольший годовой сброс был зафиксирован в 1942 году (Q0 = 8,66 м $^3$ /с), а наименьший — в 1947 году (Q0 = 4,86 м $^3$ /с)







# Вариант 1 – Строительство МГЭС на основе ранее построенной схемы

Этот вариант предполагает использование водозабора из реки Каракол. Существующее водозаборное сооружение будет восстановлено и при необходимости реконструировано (подробный план восстановления будет представлен на последующих этапах проектирования МГЭС).

Подача воды будет осуществляться по маршруту ранее существовавшего деривационного канала со следующими изменениями:

- Расход воды по каналу: 4,4 м³/с
- Живое сечение: прямоугольное
- Покрытие канала: закрывается крышками
- Материал канала: железобетон
- На новом месте будет построен совершенно новый напорный бассейн, а также напорный трубопровод диаметром 1400 мм
- Здание МГЭС также будет новым, с размерами, позволяющими разместить в нем все оборудование
- Для сброса воды из гидроагрегатов обратно в реку Каракол будет предусмотрен водовыпускной канал

#### Данный вариант МГЭС имеет следующие технические характеристики:

- Установленная мощность: 2109 кВт.
- Расчетный напор: 57,5 м.
- Расход воды: 4,4 м³/с.
- Количество гидроагрегатов: 2.

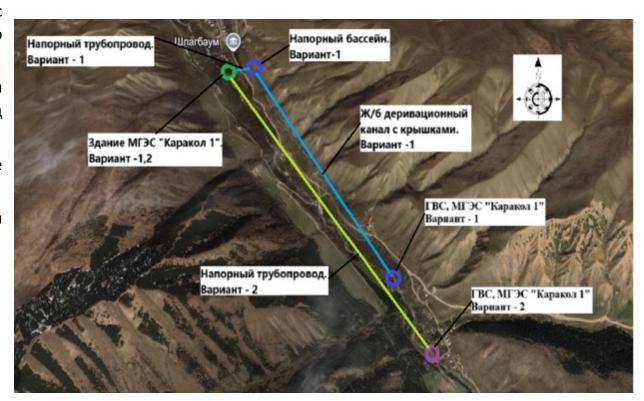






## Вариант 2 - Строительство МГЭС на новом месте

Этот вариант предусматривает строительство МГЭС на новом месте с водозабором из реки Каракол. Водозабор будет расположен выше по течению от существующего водозабора.


Этот вариант включает в себя строительство нового водозаборного сооружения и установку напорного трубопровода для отвода воды, рассчитанного на расход до  $4,4 \text{ m}^3$ /с.

Здание МГЭС будет новым, с размерами, позволяющими разместить в нем все оборудование.

Для сброса воды из гидроагрегатов обратно в реку Каракол будет предусмотрен водовыпускной канал.

#### Этот вариант МГЭС имеет следующие технические характеристики:

- Установленная мощность: 2388 кВт.
- Расчетный напор: 65,1 м.
- Расход воды: 4,4 м³/с.
- Количество гидроагрегатов: 2.







## Сравнение варианта 1 и варианта 2

#### Расчет годового производства электроэнергии

Таблица 1: Определение годового производства энергии (вариант 1)

| Месяц      | Янв | Февр | Март | Апр | Май  | Июнь | Июль | Авг  | Сент | Окт | Нояб | Дек |
|------------|-----|------|------|-----|------|------|------|------|------|-----|------|-----|
| Мвт-ч/мес. | 547 | 491  | 485  | 873 | 1519 | 1519 | 1519 | 1519 | 1519 | 820 | 550  | 426 |

Общее годовое производство: 11 786 МВт-ч/год

Таблица 2: Определение годового производства энергии (вариант 2)

| Месяц      | Янв | Февр | Март | Апр | Май  | Июнь | Июль | Авг  | Сент | Окт | Нояб | Дек |
|------------|-----|------|------|-----|------|------|------|------|------|-----|------|-----|
| Мвт-ч/мес. | 619 | 556  | 549  | 989 | 1720 | 1720 | 1720 | 1720 | 1720 | 929 | 623  | 482 |

Общее годовое производство: 13 344 МВт-ч/год

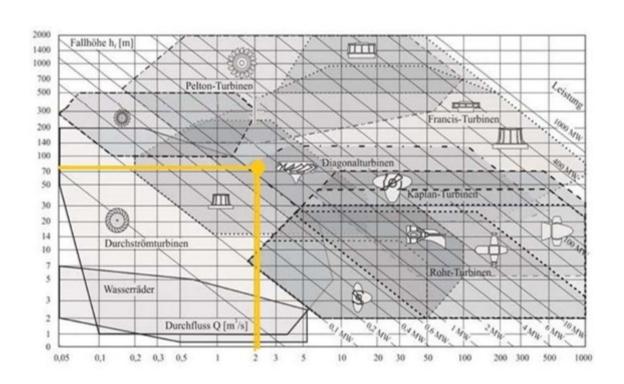
## Общая сметная стоимость без учета электромеханического оборудования

- **Вариант 1 Общая сметная стоимость:** 119 470,419 тыс. сом
- **Вариант 2 Общая сметная стоимость:** 214 914,664 тыс. сом





## Электромеханическое оборудование


Выбор типа турбины обусловлен такими аспектами, как условия эксплуатации, стоимость турбины и строительных работ, удобство обслуживания изношенных компонентов или транспортировки.

Области применения различных типов турбин показаны на следующей схеме. Для данного проекта будет выбрана радиально-осевая турбина.

Качество гидротурбин имеет решающее значение для эффективной и надежной выработки электроэнергии. Преимущества высококачественных турбин можно резюмировать следующим образом:

- Высокая эффективность
- Стабильная выходная мощность
- Снижение затрат на техническое обслуживание:
- Долговечность и прочность
- Гибкость технологических параметров
- Безопасность и надежность







## Выводы по оценке воздействия на окружающую среду

Комплексная оценка воздействия предлагаемых мероприятий на окружающую среду позволила сделать следующие выводы:

#### Исходные условия окружающей среды:

Площадка, отведенная под строительство малой гидроэлектростанции (МГЭС), расположена на достаточном удалении от промышленных объектов, вне зон их экологического влияния. В результате существующие условия окружающей среды на площадке можно считать естественными, а уровни загрязняющих веществ в природных компонентах отражают фоновые концентрации.

#### Воздействие в период строительства:

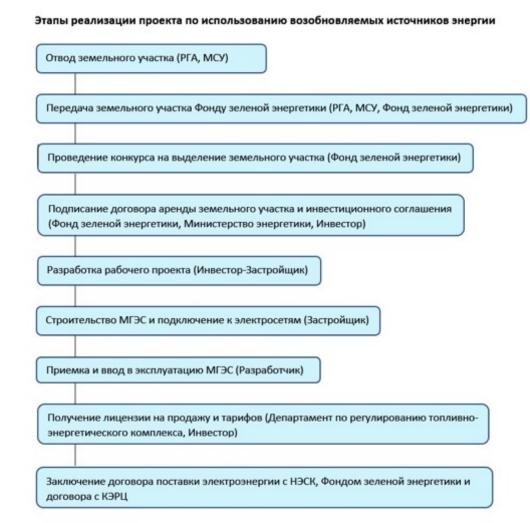
Строительные работы на МГЭС окажут краткосрочное воздействие, ограниченное продолжительностью этапа строительства. Ожидается умеренное воздействие на биологические ресурсы, в основном из-за удаления зеленой растительности, включая некоторые деревья.

Незначительное воздействие ожидается на все остальные компоненты окружающей среды, причем изменения будут настолько незначительными, что они трудно поддаются количественной оценке.

#### Отсутствие охраняемых территорий:

Строительная площадка не пересекается с какими-либо особо охраняемыми природными территориями, имеющими экологическое, научное, культурное, эстетическое, рекреационное или медицинское значение.






# **Механизмы реализации проектов в области возобновляемых источников энергии**

Этапы реализации проекта в области использования возобновляемых источников энергии в соответствии с Положением о порядке передачи земель, находящихся в ведении уполномоченного учреждения в сфере возобновляемых источников энергии, под строительство объектов возобновляемых источников энергии (Фонд зеленой энергетики) (Постановление Кабинета Министров № 429, 28 августа 2023 г.)

#### Тарифы

| Тип<br>возобновляемого<br>источника<br>энергии       | Базовый тариф,<br>СОМ/кВтч | Коэффициент        | Тариф на<br>возобновляемую<br>энергию,<br>COM/кВтч | Тариф на<br>возобновляемую<br>энергию, \$/кВтч |
|------------------------------------------------------|----------------------------|--------------------|----------------------------------------------------|------------------------------------------------|
| Все виды<br>возобновляемых<br>источников<br>энергии  | 3.4                        | 1.3                | 4.42                                               | 0.05                                           |
| Инвестиционное<br>соглашение или<br>соглашение о ГЧП | Устанавливается ин         | ндивидуально для і | каждого проекта                                    |                                                |







### Финансовый анализ

| Строительство                 |                 |
|-------------------------------|-----------------|
| Чистые капитальные затраты    | \$<br>3 683 291 |
| Прочие расходы                | \$<br>277 242   |
| Общая сумма инвестиций        | \$<br>3 960 533 |
| Общая сумма инвестиций на МВт | \$<br>1 650 222 |

#### Производство

| Нижняя граница доверительного интервала для               | P50              |
|-----------------------------------------------------------|------------------|
| Мощность (МВтф)                                           | 2,4 МВт          |
| Коэффициент использования установленной мощности          | 56,06%           |
| Скорость ухудшения рабочих характеристик в длит. перспек. | 0,00%            |
| Годовое чистое производство (кВт-ч)                       | 11 785 700 кВт-ч |

#### Контракт на разницу цен (CFD)

| Переключатель CFD | ВКЛ         |
|-------------------|-------------|
| Тариф             | 5,10 центов |
| Увеличение г/г    | 1,50%       |

#### Структура капитала

| Общий объем финансирования | \$<br>3 960 533 | 100,00% |
|----------------------------|-----------------|---------|
| Задолженность              | \$<br>2 376 320 | 60,00%  |
| Акционерный капитал        | \$<br>1 584 213 | 40,00%  |

#### Финансирование

| Срок                                                             | 17,00 лет       |
|------------------------------------------------------------------|-----------------|
| Число платежей в год                                             | 4,00            |
| Процент <mark>DC</mark>                                          | 11,00%          |
| Процент <mark>DO</mark>                                          | 10,50%          |
| Переключатель финансирования резервного счёта обслуживания долга | ВЫКЛ            |
| Резервный счёт обслуживания долга, месяцев                       | 6,00 Mec.       |
| Комиссия за предоставление кредита (разовый комиссионный сбор)   | 0,50%           |
| Способ финансирования                                            | Пропорционально |

#### Внутренняя норма доходности (IRR)

**IRR проекта** - 12,60%: этот показатель отражает общую рентабельность проекта с учетом всех инвестиций, включая как долевое, так и долговое финансирование. Он указывает на ожидаемую норму прибыли на весь инвестированный капитал.

**IRR акционерного капитала** - 14,91%: этот показатель отражает доходность именно на долю акционерного капитала в инвестициях. Более высокий IRR акционерного капитала демонстрирует потенциальную привлекательность проекта для инвесторов в акционерный капитал.

#### Срок окупаемости проекта

**Срок окупаемости проекта** - 9,44 года: это время, необходимое для возврата всех инвестиций за счет доходов от проекта. Он отражает финансовую устойчивость проекта на протяжении всего срока его реализации.



**Срок окупаемости акционерного капитала** - 10,00 лет: это время, необходимое для возврата части инвестиций акционерный капитал с учетом распределения доходов и погашения долга.



### Финансовый анализ

#### Чистая приведенная стоимость (NPV)

**NPV проекта** — 571 037 долларов США: NPV представляет собой приведенную стоимость чистых денежных потоков проекта, дисконтированных по стоимости капитала. Положительная NPV указывает на то, что проект финансово жизнеспособен и, как ожидается, принесет прибыль, превышающую стоимость инвестиций.

**NPV** акционерного капитала — 401 129 долларов США: отражает стоимость, созданную для инвесторов в акционерный капитал после учета затрат на финансирование. Положительное значение говорит о том, что проект обеспечит удовлетворительный доход для акционеров.

#### Нормированная стоимость энергии (LCOE)

Нормированная стоимость энергии (LCOE) (5,13 центов США для проекта, 5,21 центов США для акционерного капитала): нормированная стоимость энергии представляет собой среднюю стоимость производства электроэнергии в течение всего срока службы проекта. Она включает в себя все капитальные, эксплуатационные и ремонтные расходы. Конкурентоспособная нормированная стоимость энергии указывает на эффективность проекта в производстве энергии по стоимости, которая поддерживает финансовую жизнеспособность и конкурентоспособность на энергетическом рынке.



#### Заключение

Представленные финансовые показатели свидетельствуют о жизнеспособности проекта:

- Значения IRR свидетельствуют о том, что как проект в целом, так и инвестиции в акционерный капитал обеспечивают привлекательную доходность
- Положительные показатели NPV указывают на получение прибыли как от общих инвестиций, так и от вложений в акционерный капитал
- Показатель LCOE демонстрирует конкурентоспособность затрат на производство энергии, что делает проект финансово устойчивым
- Эти результаты обеспечивают прочную основу для дальнейшего развития и инвестирования в проект Каракольской МГЭС

# Ключевые инструменты и рекомендации, включенные в исследование

- Матрица принятия решений о продолжении или прекращении проекта: инструмент принятия решений на основе временной шкалы, специально разработанный для Каракольской ГЭС. Эта матрица также может служить ценной концептуальной схемой для оценки осуществимости других гидроэнергетических проектов.
- Экспертные рекомендации и руководства: отчет включает в себя подробный раздел, освещающий важнейшие аспекты подготовки предварительных технико-экономических обоснований. В нем содержатся рекомендации экспертов и передовой опыт для повышения качества и актуальности оценки проектов.
- Финансовая модель с руководством пользователя: В комплект входит надежная финансовая модель, предназначенная для оценки экономической целесообразности проекта. Сопровождаемая исчерпывающим руководством пользователя, она позволяет заинтересованным сторонам адаптировать и применять модель к аналогичным проектам малой гидроэнергетики для проведения эффективного финансового анализа.







## БЛАГОДАРЮ ЗА ВНИМАНИЕ!



