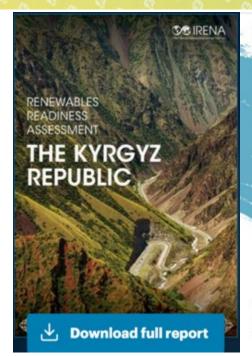
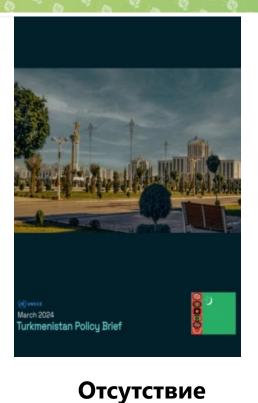


МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ «НЕЙТРАЛЬНЫЙ СТАТУС, ЗАЛОГ РАЗВИТИЯ УСТОЙЧИВОЙ ЭНЕРГЕТИКИ. ПОДДЕРЖКА ПРИНЯТИЯ РЕШЕНИЙ В ЭНЕРГЕТИЧЕСКОМ СЕКТОРЕ ДЛЯ РАЗВИТИЯ УСТОЙЧИВОЙ ЭНЕРГЕТИКИ»

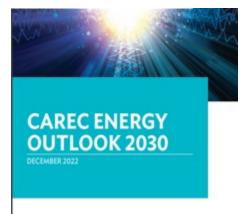
г. Ашхабад, 2 апреля 2025 г.

Рокко Де Мильо Эксперт по моделированию энергетического сектора, SECCA





Энергетический анализ В СРАВНЕНИИ с принятием решений (на местном уровне)



И многое другое...

Аналитические инструменты

Ограниченная

понимания

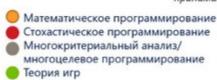
совместная деятельность

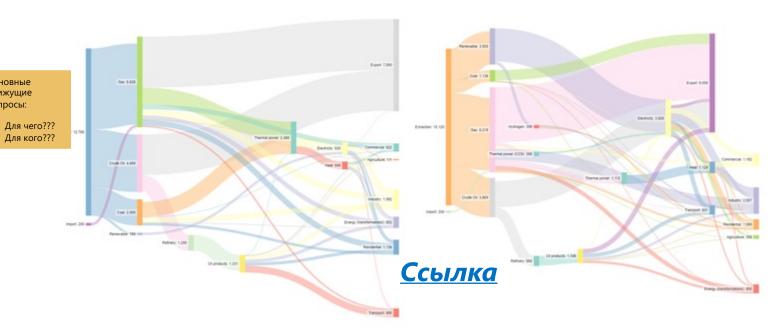
Учебные занятия для страновых "подразделений по моделированию"

К концу занятий слушатели будут разбираться в теоретических основах комплексного интегрированного анализа энергетики и климата, смогут критически анализировать исследования и отчеты на основе моделей и формулировать комментарии, а также смогут систематизировать данные и ключевые факторы для выполнения простых упражнений по моделированию на

национальном и региональном уровнях

Рабочие направления / задачи	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь	Январь	Февраль	Март
Моделирование энергетических систем Создание местных «подразделений по моделированию»									
Вводная встреча (удаленная)									
Подготовка к учебным занятиям									
Региональный семинар/тренинг 1									
Региональный семинар/тренинг 2									
Региональный семинар/тренинг 3									
Постоянный диалог и совместная работа									


			Перед семинаром	Семинар 1	Дом.задание	Семинар 2	Дом.задание	Семинар 3	Дом.задание	Итого
Имя	Должность	Кол-во дней			до		до		до	
XYZ	Мл. страновой эксперт - Х	Дом+Поле		4	5	3	5	4	4	25



Занятие 1 (сентябрь 2024 г.) - краткое резюме

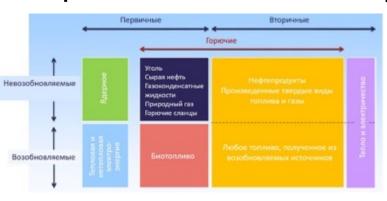
Аналитическая Отраслевой Временной горизонт Временное разрешение парадигма охват Наднациональные Географический охват Ясность деятельности Ясность технологии Основные Выбросы Способность движущие парниковых газов представлять Множественные Микроэкономическая вопросы: и воздействие на критерии/агенты устойчивость макроэкономическую окружающую обратную связь среду Способность Требования к Способность представлять вычислительным представлять Требования к данным нерыночные ресурсам / интеграция неопределенности предпочтения инструментов **Уровень** неопределенности Количество целей/критериев Количество лиц, принимающих решения

Технико-экономические "ключевые" данные

"Международное энергетическое агентство (2023), Документация по глобальной энергетической и климатической модели 2023 г., МЭА, г. Париж"

Задание -1 Сбор данных

- → ознакомиться с энергетическими и климатическими данными/ статистикой
- → ознакомиться с пробелами в данных
- → понять проблемы/задачи национальной системы



Занятие 2 (декабрь 2024 г.) - краткое резюме

Представление задания - 1 (страна)

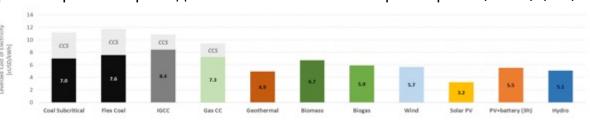
- → получить комментарии и предложения
- → поделиться опытом с коллегами

Энергетическая статистика - основы и упражнения

Задача: Вычислите массу однократно заполненного автомобильного бака объемом 50 литров или сколько килограммов составляют 50 литров бензина и 50 литров дизельного топлива.

Ответ:

50 литров бензина = 50 литров *0,724 кг/л = 37,1 кг бензина 50 литров дизельного топлива = 50 литров * 0,85 кг/л = 42,5 кг дизельного топлива


Вывод

Один и тот же объем дизельного топлива на 14,5 % тяжелее бензина.

		COA	GAS	OIL	DSL	KER	LPG	GSL	NAP	HFO	OPP	NUC	BIO	HYD	VIN	SOL	SLU	HET	ELC	TOT
		Solid Fuels	Natural Gas	Crude Oil	Diesel oil	Kerosenes	LPG	Motor spirit	Naphtha		Other Petroleum Products	Nuclear Energy	Biomass	Hydro power	Vind energy	Solar energy		Derived Heat	Electricit 9	Total
	PRIMARY																			
MIN	Domestic Supply	8098	7899	5373		. 0			. 0	0		9900	3016	1005	754	25	51 (0	0	3629
IMP	Imports	6463	3 13292	27649	4410	1210	652	1320	1366	2159	1194		113	. 0	0		0 0	0 0	1168	6099
EXP	Exports	-1147	2516	-3297	-3366	-591	-389	-300	-802	-2479	-906		-72	. 0	0		0 (0 0	-1127	****
	Total Primary Supply	13414	18675	29724	1044	619	263	-1681	565	-319	288	9900	3057	1005	754	251	1 0	0	41	****
	CONVERSION																			
ESC	Energy Sector Consumption	-58	-793	3	-33	. 0	-1058	-329	- 4	-412		0	-4				-2	2 0	0	-268
ELC	Electricity Plants	-9598	-5636	3	-60	1	-48	:		-1050	-67	-9900	-703	-1005	-754	-138	6 -33	3 1738	11581	-1567
HPL	Heat Plants	-161	1 -30	1	-15	i		1		-30	-4		-140				-2	2 659	0	
REF	Petroleum Refineries			-31736	11403	1939	2173	6710	1941	4570	2600	1								-40
	Total Conversion	-9817	-6730	-31736	11295	1939	1067	6381	1939	3078	2529	-9900	-848	-1005	-754	-136	36	2396	11581	
	FINAL																			
RSD	Residential	357	7 5160)	1724	146	380	Ι 6	. 0	31	2	: 0	1194	. 0	0	101	0 (865	2872	1283
COM	Commercial	57	7 1752	2	738	: 3	63	1	1 0	39	0		52	. 0	0	19	5	1 255	2527	551
IND	Industry	1897	4437	,	597	73	286	16	88	572	383		722	. 0	0		0 117	7 634	4088	1391
AGR	Agriculture	44	20	1	733	. 1	32	: 3	. 0	27	0		63	. 0	0		0 (16	19	114
TRA	Transport	1	1 2	1	7713	2095	188	4788	. 0	66	0		161	. 0	0		0 0	0 0	266	1530
OTH	Other	1189	9 0)		. 0	· .	ا (r 0	. 0	· .			. 0	0		0 0	627	650	246
NEN	Non Energy	52	634		153	10	400	ι ε	1798	104	160	1 0		. 0	0		0 (0	0	475
BNK	Bunkers	0) ()	294	. 0			. 0	1804	13			. 0	0		0 0	0	0	211
	Total Devil Communities	207	1220E		440E2	2220	49E0	4021	1007	2044	2000		2402			440	110	2200	10422	

Простой расчет приведенной стоимости электроэнергии (LCOE) (.xls)

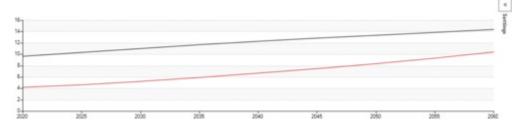
https://rezoning.energydata.info/

Задание - 2 Страновая политика и меры

- → ознакомиться с существующими политиками и мерами в области энергетики и климата
- → ознакомиться с планами на будущее
- → понять проблемы/задачи национальной системы
- → предложить гипотетические инструменты с г

Занятие 3 (январь 2025 г.) - повестка дня

Разработка и реализация Национального плана по энергетике и климату (НПЭК) в государствах-членах ЕС (ГЧ ЕС) и Договаривающихся сторонах Энергетического сообщества (ДС ЭС)



Представление задания - 2 (страна)

- → сравнить с опытом Национального плана по энергетике и климату (НПЭК)
- 🗦 получить комментарии и предложения
- → поделиться опытом с коллегами
- → обсудить конкретные требования к «моделированию» и «данным» для разъяснения/трансляции/изучения политик и мер

Простой калькулятор прогнозирования спроса (.xls)

Интервалы - разбивки (.xls)

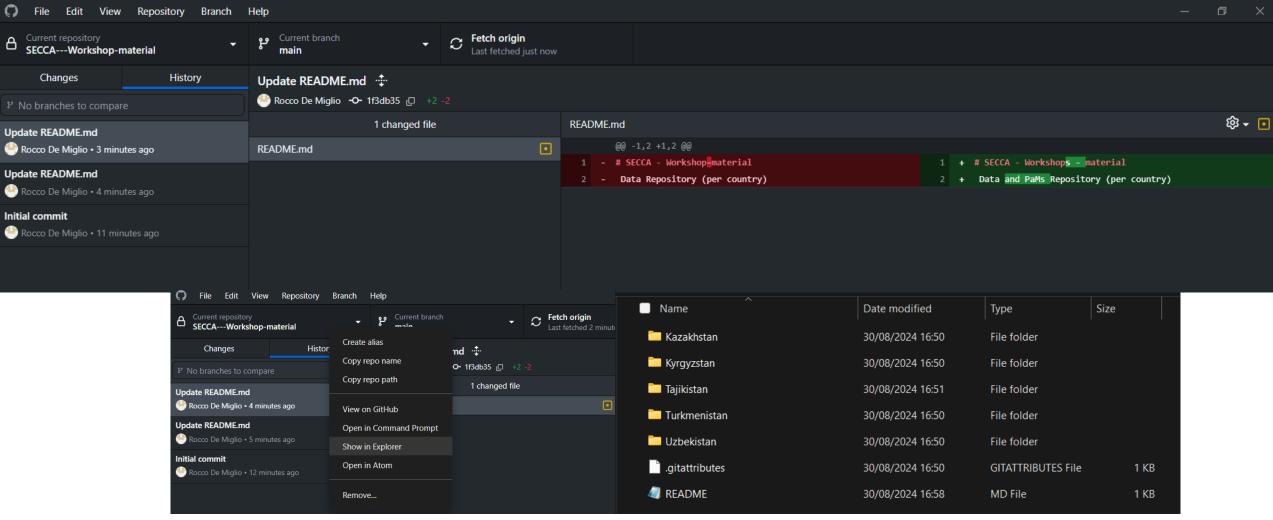
	Basic settings	0.25	0.25	0.25	0.25		0.17	0.17	0.17	0.17	0.17	0.17	
	Demand/Timeslice	R	5		w		N	L	м	D	Δ	E	
1	Residential-Water heating	0.25	0.25	0.25	0.25	100	0.083	0.250	0.167	0.167	0.167	0.167	10
2	Residential-Space cooling	0.25	0.50	0.25	0	100	0.000	0.200	0.200	0.200	0.200	0.200	10
3	Residential-Space heating	0.29	0.00	0.29	0.42	100	0.167	0.167	0.167	0.167	0.167	0.167	10
4	Residential-Lighting	0.25	0.17	0.25	0.33	100	0.083	0.250	0.167	0.083	0.167	0.250	10
5	Residential-Appliances	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	10
6	Residential-Cooking	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	16
7	Residential-Clothes washing	0.25	0.25	0.25	0.25	100	0.000	0.250	0.250	0.250	0.250	0.000	10
8	Residential-Dish washing	0.25	0.25	0.25	0.25	100	0.000	0.250	0.250	0.250	0.250	0.000	1.0
9	Residential-Refrigeration	0.25	0.25	0.25	0.25	100	0.167	0.167	0.167	0.167	0.167	0.167	10
10	Tertiary-Public-Water heating	0.25	0.25	0.25	0.25	100	0.083	0.250	0.167	0.167	0.167	0.167	1.0
11	Tertiary-Public-Space cooling	0.25	0.50	0.25	0.00	100	0.000	0.200	0.200	0.200	0.200	0.200	1.0
12	Tertiary-Public-Space heating	0.29	0.00	0.29	0.42	100	0.167	0.167	0.167	0.167	0.167	0.167	10
13	Tertiary-Public-Lighting	0.25	0.17	0.25	0.33	100	0.083	0.208	0.208	0.208	0.208	0.083	10
14	Tertiary-Public-Appliances	0.25	0.17	0.25	0.33	100	0.083	0.208	0.208	0.208	0.208	0.083	16
15	Tertiary-Public-Cooking	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	10
16	Tertiary-Public-Refrigeration	0.25	0.25	0.25	0.25	100	0.167	0.167	0.167	0.167	0.167	0.167	10
17	Tertiary-Service-Water heating	0.25	0.25	0.25	0.25	100	0.083	0.250	0.167	0.167	0.167	0.167	10
18	Tertiary-Service-Space cooling	0.25	0.50	0.25	0.00	100	0.000	0.200	0.200	0.200	0.200	0.200	1.0
19	Tertiary-Service-Space heating	0.29	0.00	0.29	0.42	100	0.167	0.167	0.167	0.167	0.167	0.167	1.0
20	Tertiary-Service-Lighting	0.25	0.17	0.25	0.33	100	0.083	0.208	0.208	0.208	0.208	0.083	1.0
21	Tertiary-Service-Appliances	0.25	0.17	0.25	0.33	100	0.083	0.208	0.208	0.208	0.208	0.083	1.0
22	Tertiary-Service-Cooking	0.25	0.25	0.25	0.25	100	0.000	0.200	0.200	0.200	0.200	0.200	10
23	Tertiary-Service-Refrigeration	0.25	0.25	0.25	0.25	100	0.167	0.167	0.167	0.167	0.167	0.167	10
24	Street Lighting	0.25	0.17	0.25	0.33	100	0.250	0.167	0.083	0.056	0.167	0.278	10
25	Industry	0.25	0.19	0.25	0.31	100	0.167	0.167	0.167	0.167	0.167	0.167	10
26	Agriculture	0.25	0.25	0.25	0.25	100	0.042	0.208	0.250	0.250	0.208	0.042	10
27	Transport	0.25	0.25	0.25	0.25	100	0.083	0.208	0.208	0.208	0.208	0.083	10

Задание - 3 Записка/краткий обзор по страновой энергетике

Занятие 3 - Дальнейшие шаги

Цель заключительного задания

- Продемонстрировать новые знания и навыки молодого специалиста (понимание учебных занятий)
- Применять «теоретические» знания для решения практических задач (с учетом специфики страны)
- Анализировать, интерпретировать или критически оценивать информацию
- Представить обоснованные / структурированные аргументы или предложения (результат)


Контекст, постановка проблем и ключевые вопросы для исследования, предлагаемые инструменты и цели, методология и требования к данным / пробелы в данных, роль заинтересованных сторон, области для будущих исследований или действий и т.д.

• Представить предложения и идеи по **дальнейшему** развитию страновых анализов и инструментов (следующий этап)

Страновые репозитории (проект SECCA) – Создание учетной записи на github

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github

Модели энергетических систем – Классификация

Аналитическая парадигма

Отраслевой охват Временной горизонт

Временное разрешение

Географический охват

Наднациональные СИЛЫ

Ясность технологии

Ясность деятельности

Множественные критерии/агенты Выбросы парниковых на окружающую среду

газов и воздействие Микроэкономическая устойчивость

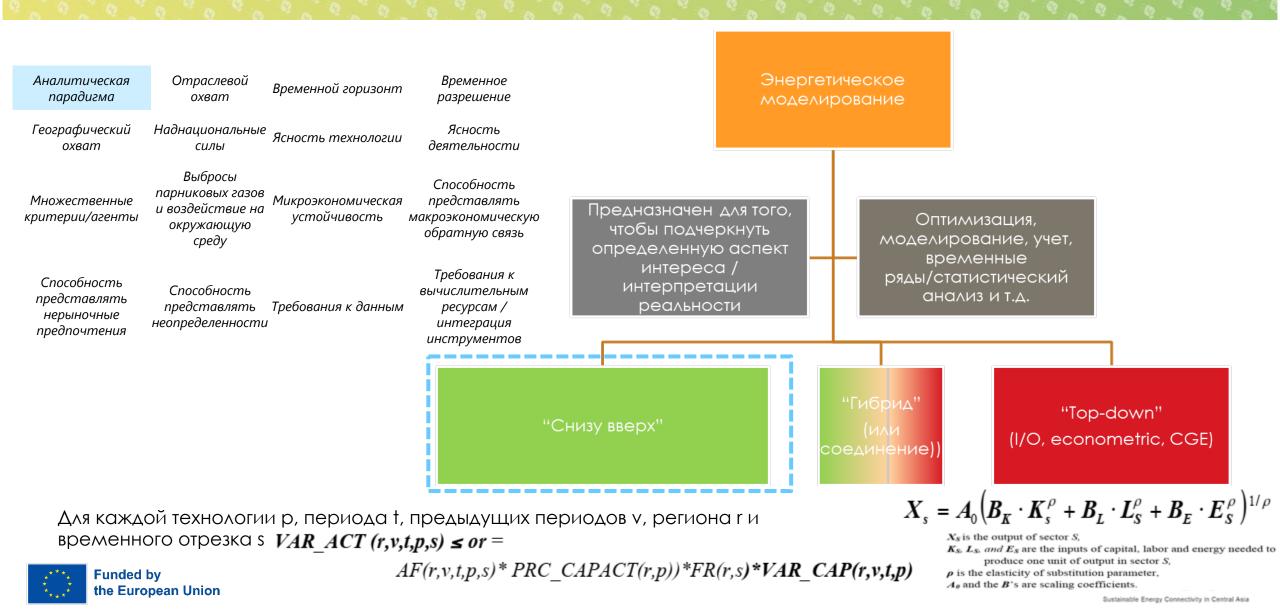
Способность представлять макроэкономическую обратную связь

Основные движущие вопросы:

- Для чего???

- Для кого???

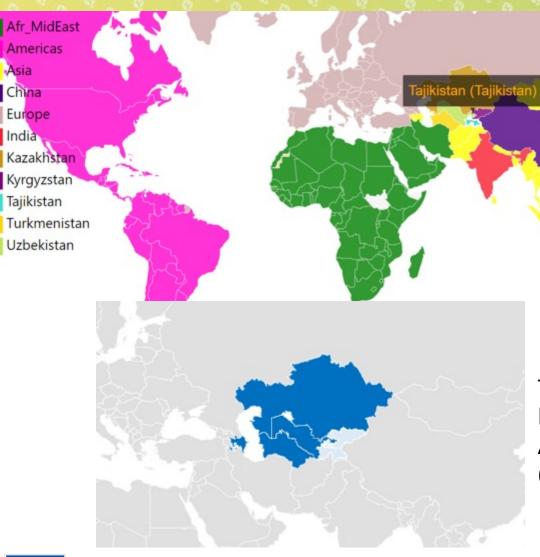
Способность представлять нерыночные предпочтения


Способность представлять неопределенности

Требования к данным

Требования к вычислительным ресурсам / интеграция инструментов

Временной Аналитическая Отраслевой охват Временное разрешение парадигма горизонт Географический Наднациональные Ясность Ясность деятельности охват силы технологии Выбросы Способность Микропредставлять Множественные парниковых газов и экономическая критерии/агенты воздействие на макроэкономическую устойчивость окружающую среду обратную связь Способность Требования к Способность представлять Требования к вычислительным представлять нерыночные данным ресурсам / интеграция неопределенности предпочтения инструментов



Национальный / внутринациональный / наднациональный Один узел / Множество узлов

© GeoNames, Microsoft OpenStreetMap, TomTo

KINESYS-TJ

Модель глобальной энергетической системы, основанная на генераторе моделей TIMES. Все страны Центральной Азии и ключевые соседние страны представлены на страновом уровне.

Остальные страны сгруппированы в модельные регионы (например, Европа, Америка, ...).

TIMES-CAC

Модель многорегиональной энергетической системы Азербайджан, Казахстан, Туркменистан, Узбекистан + (Таджикистан и Кыргызстан, неявно)

https://github.com/RDMgit77/TIMES-CAC_VO_Open.git)

Аналитическая парадигма

Отраслевой охват

Временной горизонт

Временное разрешение

Географический охват

Наднациональные силы

Ясность технологии

Ясность деятельности

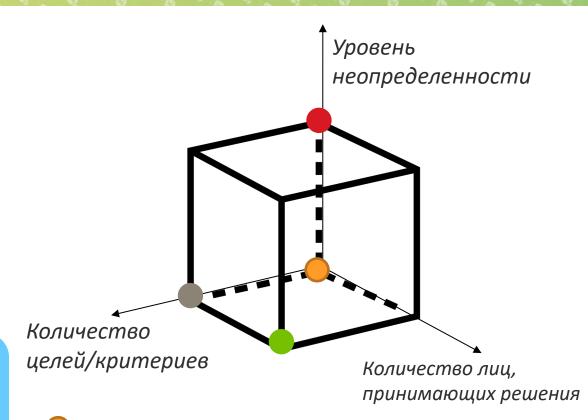
Множественные критерии/агенты Выбросы парниковых газов и воздействие на окружающую среду

Микроэкономическая устойчивость Способность представлять макроэкономическую обратную связь

Способность представлять нерыночные предпочтения

Способность представлять неопределенности

Требования к данным


Требования к вычислительным ресурсам / интеграция инструментов

Почему это так важно?

Множество неопределенных параметров

Глубокое влияние на прогнозы, решения, затраты

Лица, принимающие решения, не склонны к риску

- Математическое программирование
 - Стохастическое программирование
- Многокритериальный анализ/ многоцелевое программирование
- Теория игр

Аналитическая парадигма

Отраслевой охват

Временной горизонт Временное разрешение

Географический охват

Наднациональные силы

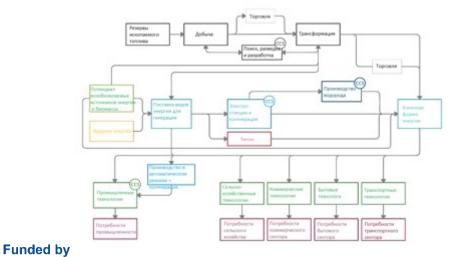
Ясность технологии Ясность деятельности

Множественные критерии/агенты

Выбросы парниковых газов и воздействие на окружающую среду

Микроэкономическая устойчивость

Способность представлять макроэкономическую обратную связь


Способность представлять нерыночные предпочтения

Способность представлять неопределенности

the European Union

Требования к данным

Требования к вычислительным ресурсам / интеграция инструментов

Почему это важно?

Отражает возможность явного моделирования оценки политики зависимости технологических деталей модели.

Это позволяет проводить более тонкий анализ (например, системы декомпозицию сокращения выбросов по типам изменений).

Почему это важно?

«Целевая» политика и меры отношении ключевых технологий и товаров.

вычислительным

ресурсам /

интеграция

инструментов

Аналитическая	Отраслевой	Временной горизонт	Временное
парадигма	охват		разрешение
Географический	Наднациональные	Ясность технологии	Ясность
охват	силы		деятельности
Множественные критерии/агенты	Выбросы парниковых газов и воздействие на окружающую среду	Микроэкономическая устойчивость	Способность представлять макроэкономическую обратную связь
Charachuacha	Charachuainn		Требования к

Требования к данным

Способность

представлять

неопределенност

Почему это важно?

Решения потребителей определяются неэкономическими факторами, такими как комфорт, время в пути, размер автомобиля и т. д.

Почему это важно?

Отражает способность представлять сложные, ограниченные финансовыми возможностями инвестиционные решения

Почему это важно?

Ограниченный бюджет потребителей

Эффект отскока

Влияние на ВВП, ВДС и т.д.

Способность

представлять

нерыночные

предпочтения

Аналитическая парадигма Отраслевой охват

Временной горизонт

Временное разрешение

Географический охват

Наднациональные силы

Ясность технологии

Ясность деятельности

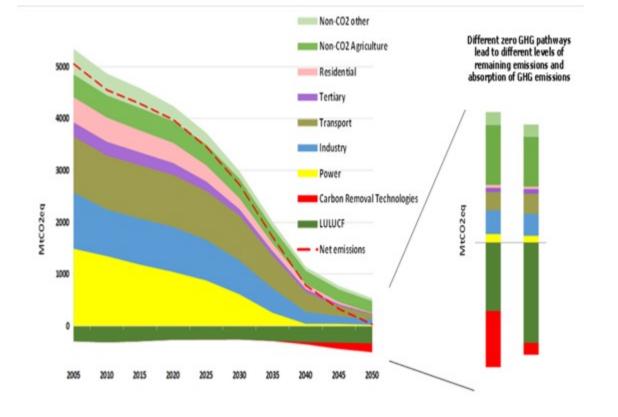
Множественные критерии/агенты Выбросы парниковых газов и воздействие на окружающую среду

Микроэкономическая устойчивость Способность представлять макроэкономическую обратную связь

Способность представлять нерыночные предпочтения

Способность представлять неопределенности

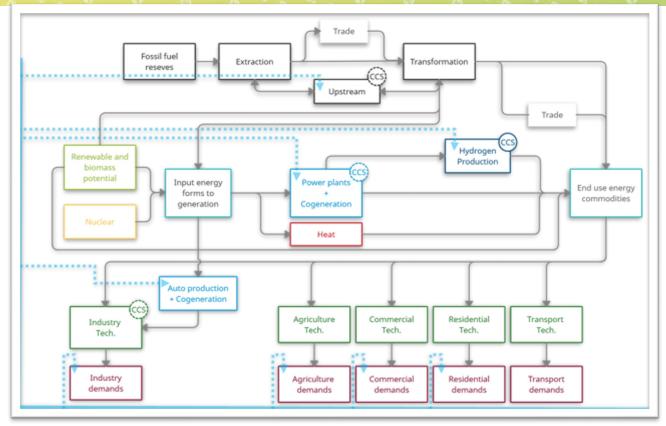
Требования к данным

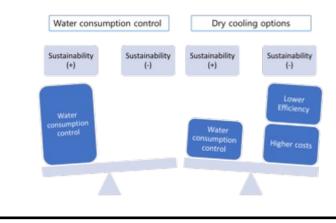

Требования к вычислительным ресурсам / интеграция инструментов

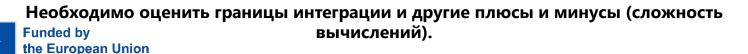
Почему это важно?

Цели по декарбонизации (движущие силы многих технологических изменений)

Водопользование: добыча ресурсов, выращивание энергетических культур, гидроэнергетика, тепловые электростанции


Уязвимость к изменению климата / землепользование (конкуренция)


Интеграция с другими измерениями – вода



ЕСЛИ/КАК интегрировать ограничения «водозабора» и «водопотребления» в анализ энергосистемы: ОТКРЫТАЯ тема для обсуждения.

«Интеграция» может быть ограничена только энергетическим сектором или распространяться на другие критические технологии энергетической цепи (H2, CCS, биотопливо и т.д.).

- Могут быть *неявно* учтены «ограничения» по воде (изменение сюжетных линий / детерминированных параметров, таких как факторы доступности, кривые снабжения, собственное потребление и т.д., для каждого сценария «вода и энергия»).
 - → «Связывание» моделей.
- «Ограничения» по воде могут быть (в некоторой степени) явно учтены, чтобы «эндогенизировать» критерий воды в процессе оптимизации (обратите внимание, что варианты сухого охлаждения более экономны по расходу воды, но в целом менее экономны по расходу энергии компромисс).

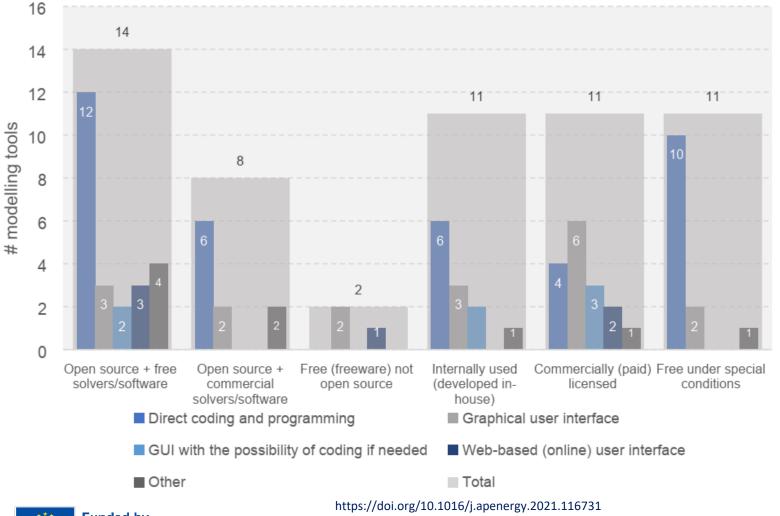
Стандартные выходные данные

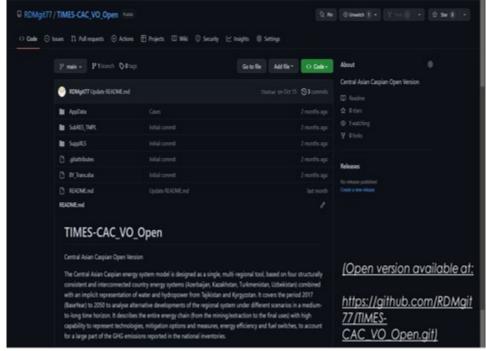
Траектория выбросов парниковых газов: по секторам (транспорт, промышленность, жилищный, коммерческий, сельское хозяйство, производство электроэнергии, добыча/переработка нефти и газа), по видам топлива (дизельное топливо, природный газ, бурый уголь и т.д.), а также расчет основных показателей (углеродоемкость на единицу энергии, энергоемкость и т.д.).

Конечное потребление энергии и первичное энергоснабжение. По энергоносителям (электроэнергия, бурый уголь, природный газ, дизельное топливо, бензин, тяжёлое дизельное топливо и т.д.) и по отраслям (транспорт, промышленность, жилищный, коммерческий, - сельское хозяйство).

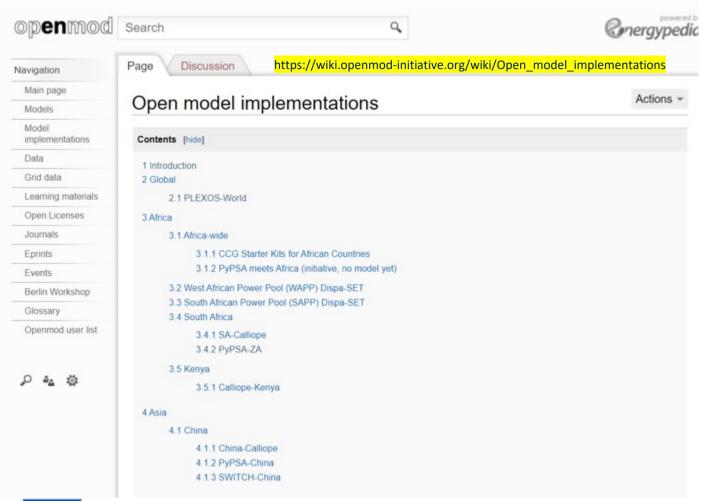
Сочетание технологий и их эволюция с течением времени. Установленные мощности в зависимости от типа технологии и вида топлива в энергетическом секторе, мощности технологий в секторах спроса (промышленность, жилые/коммерческие здания, транспорт). Изменения в использовании технологий с течением времени.

Инвестиционные затраты (и другие компоненты затрат). За год периода времени, по типам технологий и секторам (анализ последствий разбивки между государственными и частными инвестициями).


Предельные цены. Предельные цены на энергоносители (электроэнергия, бурый уголь, природный газ, дизельное топливо, бензин, тяжёлое дизельное топливо и т.д.) и по секторам (транспорт, промышленность, жилищный, коммерческий, сельское хозяйство).

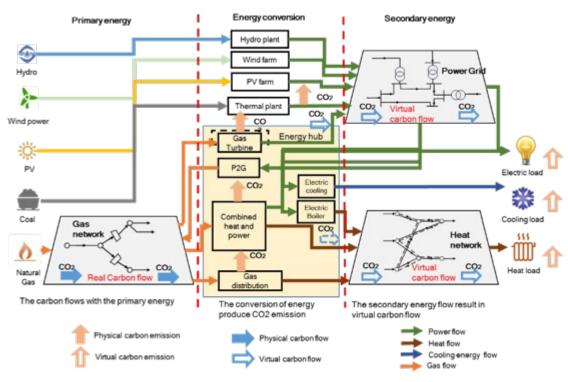

Производство/спрос на электроэнергию в сети и импорт/экспорт: годовой спрос в разбивке по секторам (транспорт, здания, промышленность, сельское хозяйство), включая дополнительный спрос в результате электрификации транспорта, систем отопления и охлаждения, а также электрификации промышленности.

Ключевые показатели эффективности (КПЭ). Несколько дополнительных показателей (в зависимости от типа анализа и детализации представления).



https://github.com/RDMgit77/TIMES-CAC_VO_Open.git)

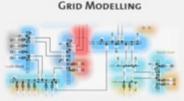
Открытый исходный код и открытые данные в энергетическом моделировании


https://openenergy-platform.org/factsheets/frameworks/

MESSAGEix Integrated Assessment Model and the ix modeling platform	false	Apache license 2.0
Model Order Reduction for Gas and Energy Networks	false	Согласно этой лицензии пользователи могут
Mosaik	false	Использовать код E GNU Lesser General коммерческих _{License v3.0} целях
<u>OMEGAlpes</u>	false	Компании могут включать лицензионный ^{license} код в
Open Electricity Grid Optimization	false	собственное А нпрограм мное обеспечение каторое они
Open Energy Modelling Framework (oemof-solph)	false	затем продают клиентам.
Potsdam Integrated Assessment Modeling Framework (PIAM)	false	GNU Lesser General Public License v3.0
Python for Power System Analysis toolbox (PyPSA)	false	Unknown
Renewable Energy Mix	false	Unknown
<u>SecMOD</u>	false	MIT
SPINE Toolbox	false	Unknown
The Integrated MARKAL-EFOM System (TIMES) Model Generator	false	GNU General Public License family

Интеграция энергетических систем (взаимодополняемость)

http://www.ningzhang.net/MES.html


- Проблемы с местоположением (пространственное решение)
- "Watergy" (разрешение пространства и потока)
- Экономическая структура (общее равновесие)
- Энергетическая система (пространственное и временное разрешение)

ENERGY MODELLING THE PROPERTY OF THE PROPERTY

- Cross-sector analysis of optimal energy development in the country as well as through the region
- Possibility to compare the effectiveness of alternative energy development strategies in different future scenarios and define the most optimal long-term implementation pipeline
- Possibility to foresee the cross-sector economic and environmental impact of the energy development strategies

- Simulating hourly demand and supply, estimating reserve requirements, generation flexibility issues and estimating the necessity of mitigation measures, storage or other technologies
- Optimization of available primary energy resources and analysis of generation adequacy for development scenarios
- With the complex dispatch model, calculation of the total cost of generation, operation, curtailment (if any), shadow prices and other indicators

- Identification of the most severe scenarios based on realistic assumptions and analyzing them with highly accurate nonlinear steady-state and dynamic models
- Ensuring network loadings, voltages, system frequency, and power quality in globally applied permissible boundaries in normal and emergency cases
- Assessment of various smart grid technologies for ensuring stability and reliability in isolated as well as parallel regional operation

33

333

202

>>>

222

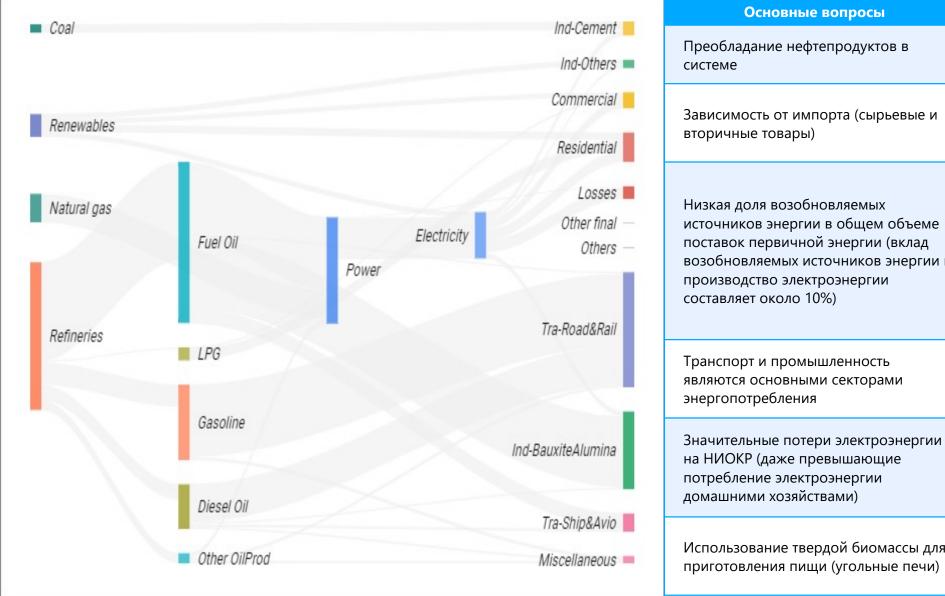
333

- 8

Теория принятия решений

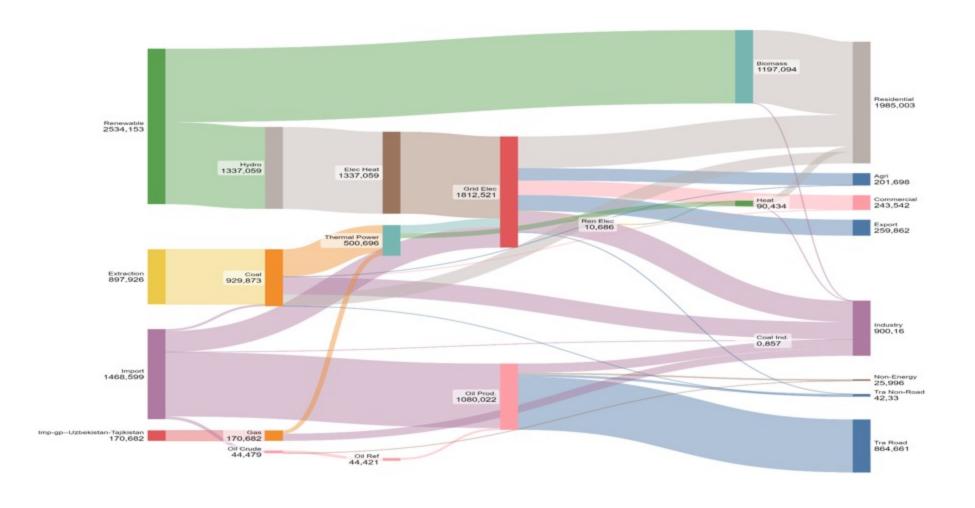
<u>Теория принятия решений</u> — это совокупность количественных методов, используемых для обоснования принятия решений на индивидуальном и популяционном уровнях.

Задействованные дисциплины: анализ рисков, анализ затрат И выгод эффективности, экономической оптимизация/ имитационное моделирование, а также поведенческая решений, принятия теория микроэкономика, статистический анализ, и социальная психология, когнитивная информатика и наука о данных, ...


the European Union

Исследование операций (область математики) фокусируется на практических приложениях, оно пересекается с другими дисциплинами, включая организацию производства и оперативное управление.

Нормативные модели рекомендуют людям, как им следует делать «**выбор**», или описательные модели, изображающие, как они на самом деле делают «**выбор**».



В чем заключается трудность?

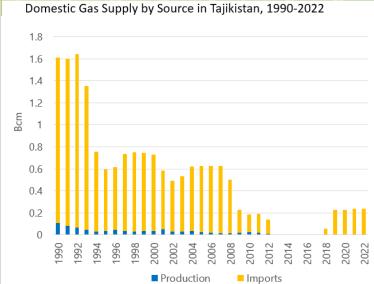
Основные вопросы	Возможные действия
Преобладание нефтепродуктов в системе	Диверсификация ассортимента
Зависимость от импорта (сырьевые и вторичные товары)	Снижение воздействия (финансового и снабженческого)
Низкая доля возобновляемых источников энергии в общем объеме поставок первичной энергии (вклад возобновляемых источников энергии в производство электроэнергии составляет около 10%)	Использование внутренних возобновляемых ресурсов
Транспорт и промышленность являются основными секторами энергопотребления	Отраслевые преобразования и передовые технологии
Значительные потери электроэнергии на НИОКР (даже превышающие потребление электроэнергии домашними хозяйствами)	Реконструкция сети и децентрализованная генерация электроэнергии
Использование твердой биомассы для приготовления пищи (угольные печи)	Обеспечение доступной и устойчивой энергетики для всех и улучшение качества воздуха

Пример: Диаграмма Сэнки – 2019 (тыс. т н.э.) – Таджикистан

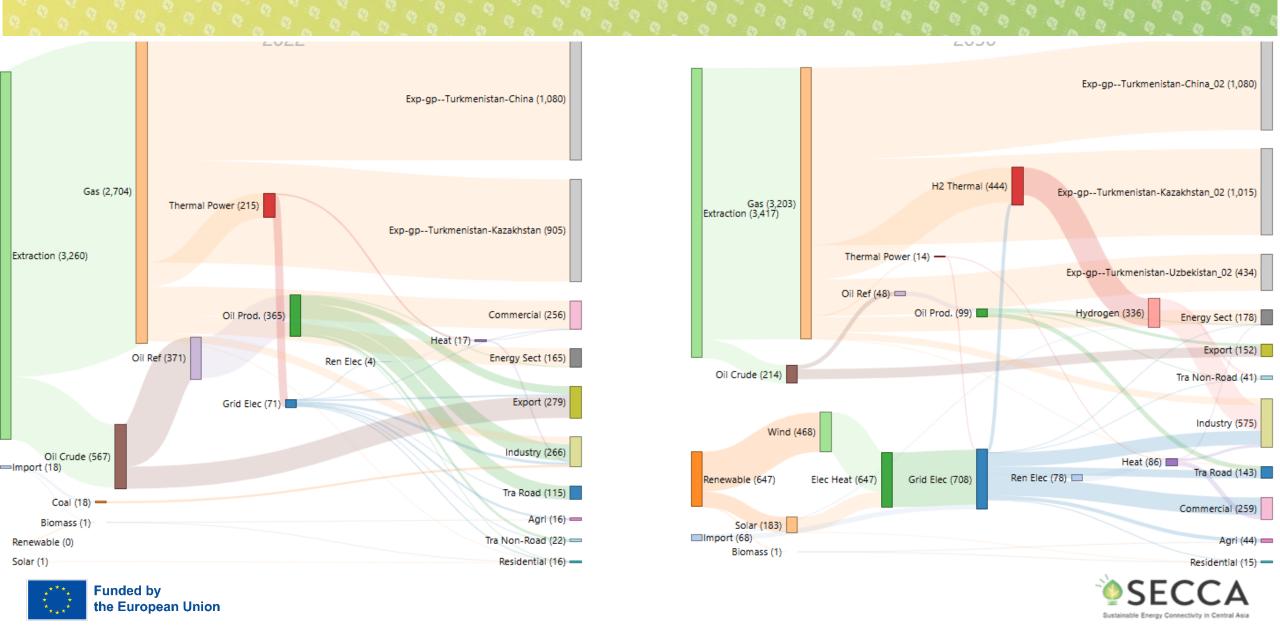


Пример: Диаграмма Сэнки – 2019 (тыс. т н.э.) – Таджикистан


Table 2.1 - Targets for coal production in Tajikistan until 2040 (compilation of data from various strategic documents) and actual coal production in 2015 and 2020, million tonnes


Source	2015	2020	2025	2030	2040
National Development Strategy of the Republic of Tajikistan, Industrial Scenario, 2016	1.0 (fact)	4.1 (target)	6.9 (target)	10.4 (target)	
National Development Strategy of the Republic of Tajikistan, Industrial-Innovative Scenario, 2016	1.0 (fact)	5.3 (target)	10.3 (target)	15.1 (target)	
Concept for the development of the coal industry, 2019				10.4 (target)	15.0 (target)
Accelerated Industrialisation Programme of the Republic of Fajikistan 2020-2025, 2020	-	2.1 (target)	2.4 (target)	-	
National statistics	1.0 (fact)	2.0 (fact)			٠.

Sources: National Development Strategy of the Republic of Tajikistan until 2030, Tajikistan Coal Sector Development Concept until 2040, Accelerated Industrialisation Programme of the Republic of Tajikistan 2020-2025, data provided by the national consultant



Пример: Диаграмма Сэнки – 2021-2050 – Туркменистане

Энергетические сценарии в сравнении с лицами, принимающими решения

Трудность: разрыв между «теорией и практикой»

Цель: поделиться некоторыми элементами/опытом для дальнейшего рассмотрения и обсуждения

Послание: Отсутствие (стандартной/уникальной) методологии разработки сценариев на основе моделей *КРОМЕ* некоторых «слабых» практик

Поддержка принятия решений на основе моделей

Что мы делаем

Исследования

Предположения

Что мы получаем

Аналитические сведения

Прогнозы

К чему мы стремимся

Знания

Моделирование при разработке политики – ключевое слово: интеграция

Почему лица, принимающие решения, нуждаются в моделях или используют их?

- Отражение и интерпретация сложного реального мира в понятной (полезной для конкретной сферы применения) форме.
- Структурированная организация большого количества данных и данных).
- рамках одной и той же (последовательной) структуры компромиссов.

путем сравнения

іі) перевод в

і) определение

проблемы

Сценарии изменения климата и энергетики на основе моделей

Энергетические сценарии служат точками сравнения для оценки чувствительности и множественных результатов

Множественные исследования: обучение путем изучения / обучение путем сравнения

• <u>Комплексный анализ</u>: основан на целостном подходе, который **одновременно** рассматривает как можно больше точек зрения или аспектов динамики энергетики и климата и принимает во внимание сквозной характер и **взаимодействие** между этими аспектами.

В контексте этого анализа мы можем более конкретно остановиться на пяти аспектах Энергетического союза (Декарбонизация, Энергоэффективность, Энергетическая безопасность, Внутренний энергетический рынок, Исследования, инновации и конкурентоспособность).

Моделирование энергетической системы – итерационный процесс

Не только моделирование

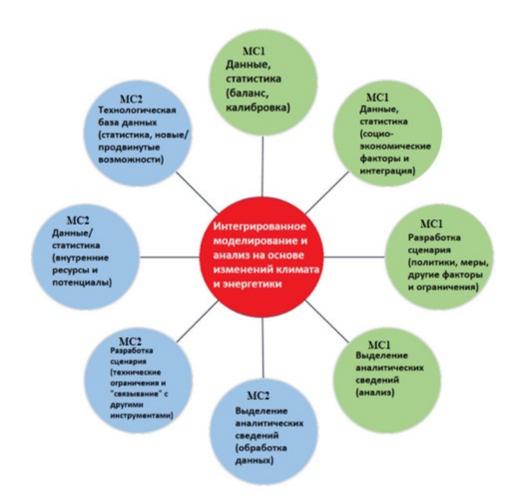
Комплексный анализ энергетики и климата

- Анализ данных и статистика
- Оценка технологии
- Экономический анализ
- Разработка политики (и моделирование)
- Анализ результатов, ключевых показателей эффективности и визуализация
- Анализ неопределенности
- Сравнение с другими исследованиями

- ...

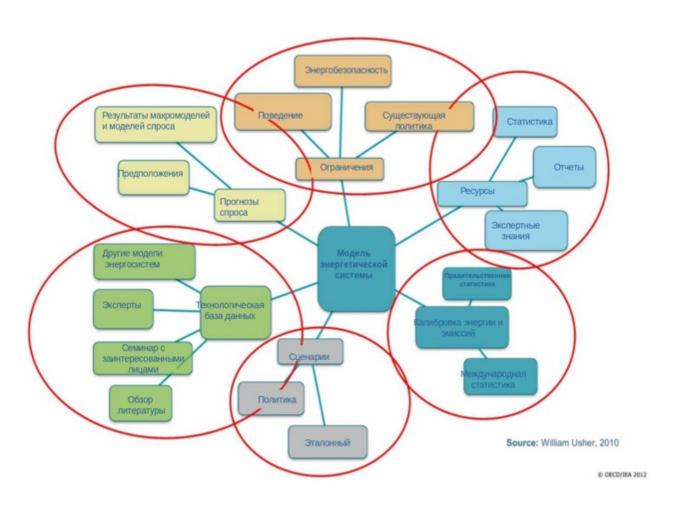
Совместная оценка потребностей/приоритетов в рамках данного технического содействия

(на уровне страны и региона)



Моделирование – это не только «моделирование»

Существует множество способов, подходов и методов (моделирования) для изучения эволюции ключевых показателей эффективности в области энергетики и климата с течением времени. Но, несмотря на различия, все они опираются на несколько фундаментальных основ и принципов, таких как:


- понимание и интерпретация сложности систем реального мира;
- сбор, понимание, систематизация и использование данных (количественный анализ);
- анализ политических инструментов, позволяющих повернуть систему к желаемому состоянию.

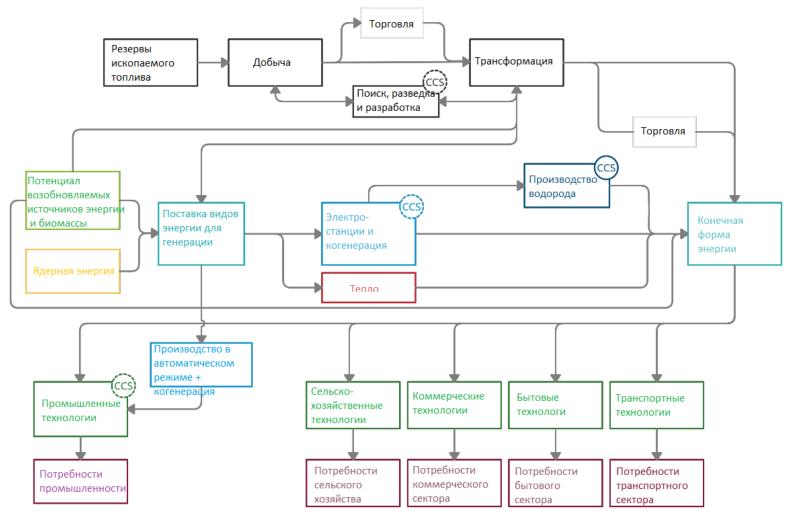
Математическое описание – Основные исходные данные

Технологическая база данных

- Данные по конкретным технологиям в жилищном секторе, в сфере услуг (существующие и новые)
- Данные по конкретным технологиям в промышленности и транспортном секторе, сельском хозяйстве (существующие и новые)
- Данные по конкретным технологиям в энергетическом секторе (новые)

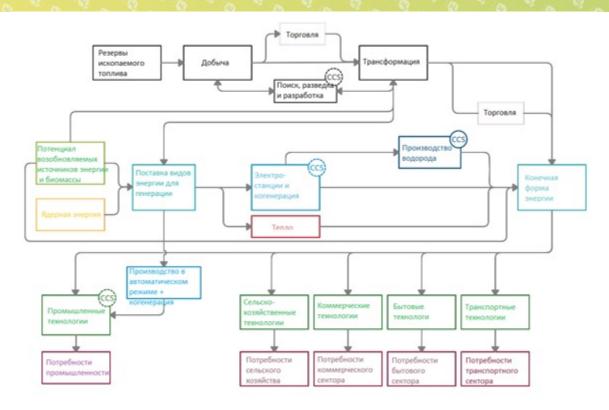
Ресурсы

-**С**Потенциал ВИЭ / полезных ископаемых (ветер, солнце, биомасса,...)

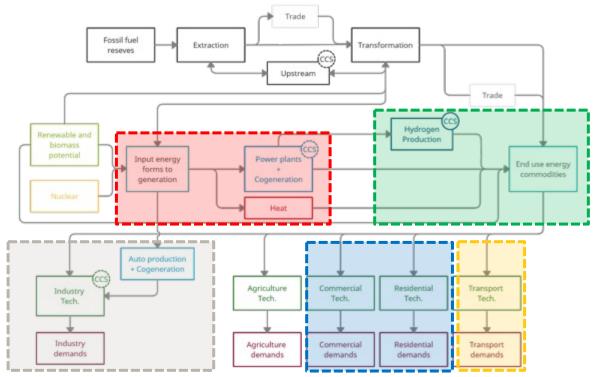

Политика и меры, а также другие факторы

- Подлежит обсуждению

Эталонная энергетическая система – ВИЭ – Примеры (2)



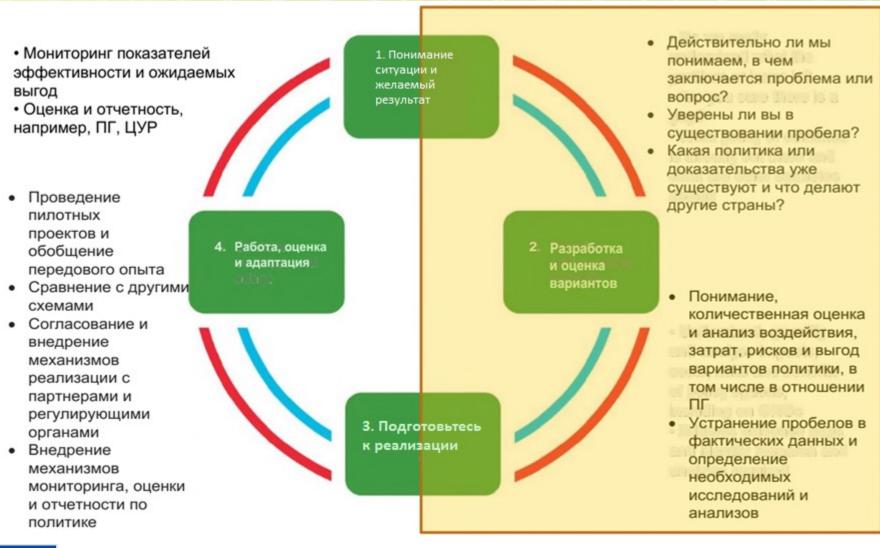
Задание: трансформируйте критическую проблему принятия решений в вашей стране в схему ВИЭ



Моделирование энергетических систем: Система ≠ совокупность частей

Системный анализ (оптимизация)

Потоки энергии и связанные с энергией выбросы по услугам/секторам и по всей системе. Цели/меры могут быть проанализированы по услугам и/или секторам и/или системам.


Существующий анализ по конкретным секторам (выделены)

Потоки и выбросы энергии на каждом отдельном отраслевом уровне. Потоки между подсекторами/внутри подсекторов отсутствуют.

Цикл разработки/реализации политики

чтобы Для ТОГО иметь возможность должным образом оценить ЭТИ стратегические цели приступить Κ процессу разработки политики, лицо, принимающее решения, должно задействовать целый ряд навыков и знаний.

Разработка политики требует участия представителей всех профессий аналитических экономистов, (статистиков, исследователей операционной деятельности социальных проблем), инженеров, технических специалистов области энергетики консультантов вопросам политики.

Моделирование при разработке политики

Изучение влияния различных факторов

Наднациональные элементы

- Международные цены на ископаемое топливо
- Поведение других игроков
- Технологические затраты
- Международные стандарты
-

Национальные элементы

- Структура социальноэкономического сектора
- Потребности в энергетических услугах
- Внутренние энергетические ресурсы
- Другие факторы и ограничения (например, технологии, рынок и т.д.)
- - ...

Национальные цели и политики

- Целевые показатели (общие, отраслевые и т.д.)
- Меры (товар, технология и т.д.)
- ...

Неопределенности

Управляемость (лица, принимающие решения)

Моделирование при разработке политики

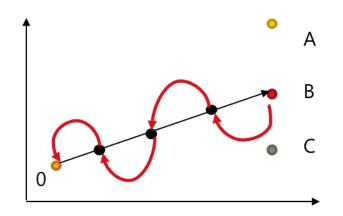
Национальные цели и целевые показатели*

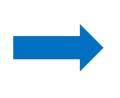
1 (4mo?)

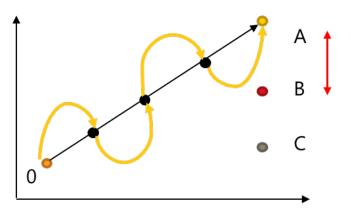
Включить "целевые показатели", которые должны быть достигнуты в сценариях

(например, целевой показатель ЭЭ, целевой показатель ВИЭ или целевой показатель выбросов и т.д.)

* **Целевые показатели** определяют конкретные количественные "пороговые значения", которые должны быть достигнуты

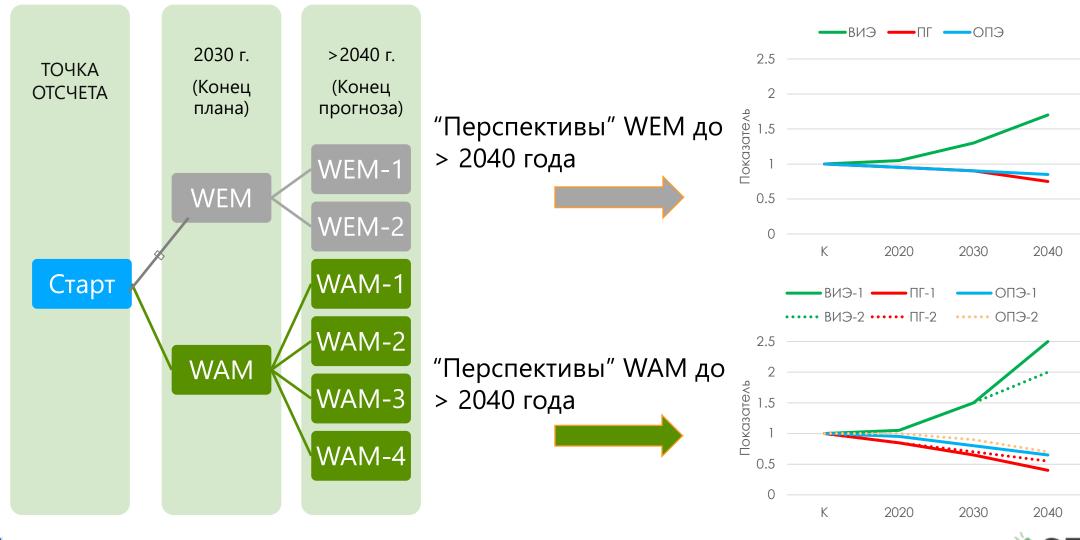

Политики и меры*

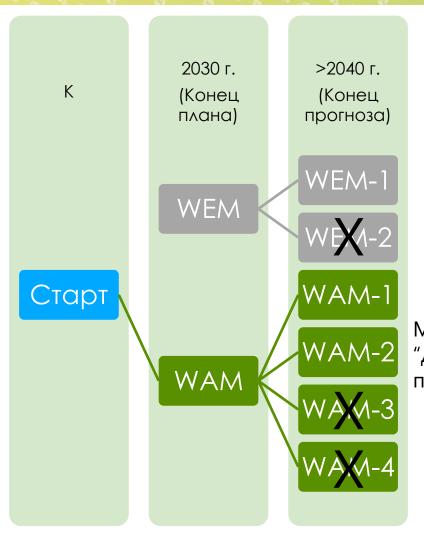

2 (Kak?)

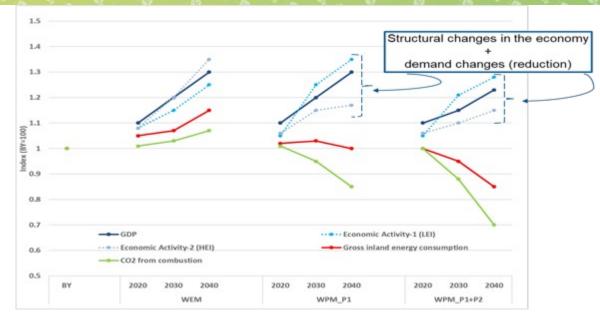

Включить набор политических "механизмов"

(например, налог на выбросы CO2, льготные тарифы, стандарты и т.д.) и изучить влияние на показатели, связанные с энергетикой и окружающей средой

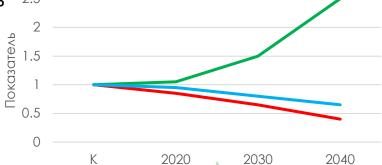
* Меры являются инструментами реализации политик







ВИЭ - возобновляемые источники энергии ПГ – парниковые газы ОПЭ – общее потребление энергии



Многократные исследования / непрерывный синтаксический анализ "дерева исследований" до тех пор,

пока не будет найден "надежный" путь

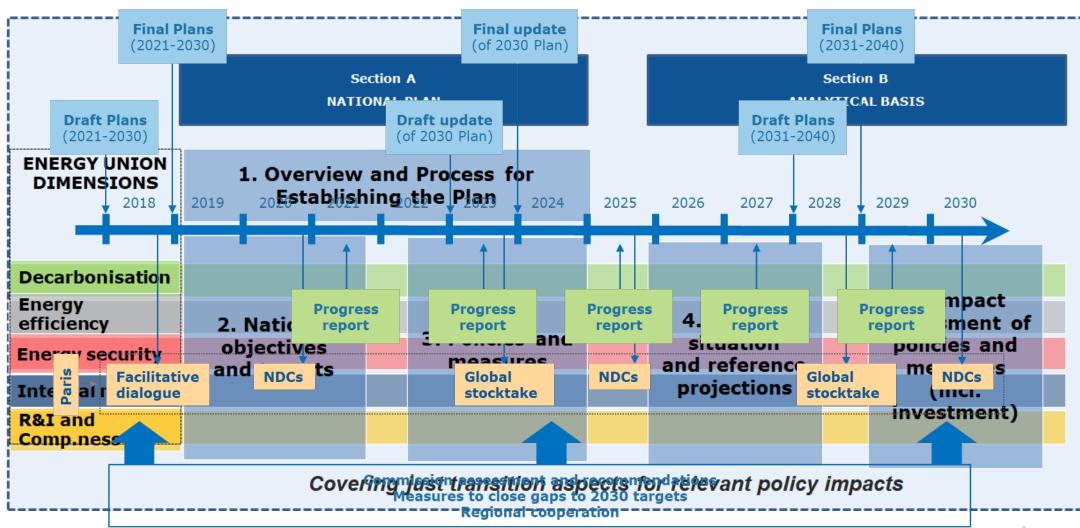
«Надежный прогноз» WAM на период до 2040 (по нескольким года критериям)

ВИЭ - возобновляемые источники энергии ПГ – парниковые газы ОПЭ – общее потребление энергии

WEM – с существующими мерами WAM – с дополнительными мерами

Структура моделирования для анализа энергетики и климата – пример

Количественная оценка сценариев, основанная на модели, помогает Европейской комиссии в оценке воздействия и анализе вариантов «политики»


Инструменты связаны друг с другом для обеспечения согласованности («интеграции»)

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/economic-analysis/modelling-tools-eu-analysis_en

Определение улучшений в области энергоэффективности – индикаторы

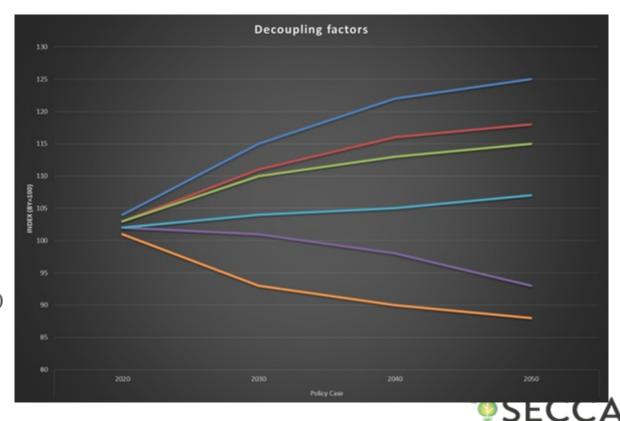
Потребление **МЕНЬШЕГО** (-) количества энергии для предоставления **ТАКОЙ ЖЕ** (=) услуги

Потребление **ТАКОГО ЖЕ** (=) количества энергии для предоставления **БОЛЬШЕГО** объема коммунальных услуг

Потребление **МЕНЬШЕГО** (-) количества энергии из-за необходимости **ИЗМЕНЕНИЯ** (≠) объема коммунальных услуг

Потребление **МЕНЬШЕГО** (-) количества энергии и предоставление **МЕНЬШЕГО** (-) количества услуг

Является ли все вышеперечисленное повышением уровня энергоэффективности?


Общий показатель энергоэффективности: $\frac{Energy\ Consumption\ (t)}{Activity\ (t)}$

Общий показатель энергоэффективности:

Energy consumption (x,t) – Energy consumption (B,t)

«Разъединение переменных» — это когда две переменные перестают двигаться вместе:

- корреляция между ними остается положительной (относительной)
- корреляция между ними становится нулевой или отрицательной (абсолютной)

Принцип «энергоэффективность прежде всего» на уровне ЕС

Статья 2(18) Регламента об управлении Энергетическим союзом и борьбе с изменением климата

Принцип «энергоэффективность прежде всего» - это руководящий принцип в управлении изменением климата и энергетикой в ЕС и за его пределами, который, полностью учитывая надежность поставок и рыночную интеграцию, гарантирует, что страны производят только необходимое количество энергии и что на пути к достижению климатических целей они не допускают инвестиций в бесхозные активы.

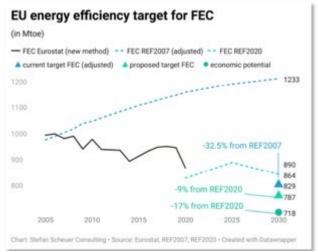
Этот принцип должен учитываться в комплексных национальных планах по энергетике и климату (NECP) государств-членов.

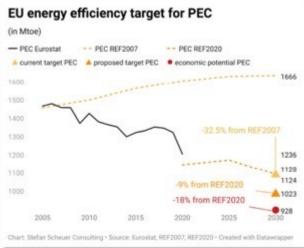
Согласно этому принципу энергоэффективность рассматривается **приоритетным источником энергии**, то есть необходимо «сохранить энергию прежде чем производить ее».

Принцип рассматривает <u>эффективность «комплексной энергетической</u> <u>системы» (в ее целостности)</u> и подразумевает продвижение наиболее эффективных решений для достижения климатической нейтральности <u>по всей цепочке создания стоимости</u> (от производства энергии, транспорта до конечного потребления) для того, чтобы достигнуть энергоэффективности как в потреблении первичной, так и конечной энергии.

Согласно принципу необходимо отдать предпочтение прежде всего рентабельным решениям на стороне спроса, а не инвестициям в энергетическую инфраструктуру.

Общая цель энергоэффективности – пересмотр Директивы ЕС по энергоэффективности


ЕС поставил перед собой амбициозные цели по энергоэффективности на 2020 и 2030 годы – сократить потребление **первичной** и **конечной** энергии в рамках целей по декарбонизации до 2050 года.


Исходный сценарий (2018 г.): основная цель ЕС по энергоэффективности на 2030 год – не менее 32,5% (по сравнению с прогнозами ожидаемого энергопотребления в 2030 году). Цель 32,5% - к 2030 году потребление конечной энергии составит 956 млн т н.э. и/или потребление

Последние данные (2022, в рамках плана REPowerEU)

	Анализ моделирования для	Анализ сетевого моделирования	
Потребление энергии	пересмотра EED Полный пакет 9% ЭЭ/40% ВИЭ	REPowerEU 13% ЭЭ/45% ВИЭ	REPowerEU 19% ЭЭ/45% ВИЭ
Цель ЕС по потреб. конеч. энерг. относительно сценария REF2020	9%	13%	19%
Потребление конечной энергии (млн т.н.э.)	787	751	701
Цель EC по потреб. первич.энерг. относительно сценария REF2020	8%	10%	13%
Потребление первичной энергии (млн т.н.э.)	1,033	1,006	979

первичной энергии составит 1 273 млн т н.э.

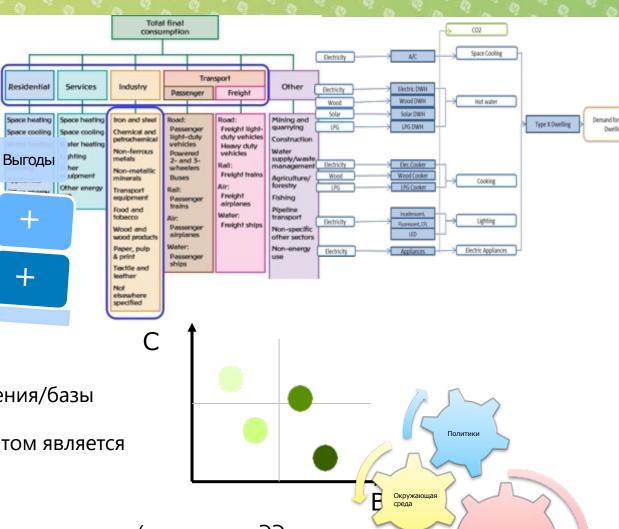
Анализ на основе моделей

Понимание энергоэффективности – ориентировочные шаги

Затраты

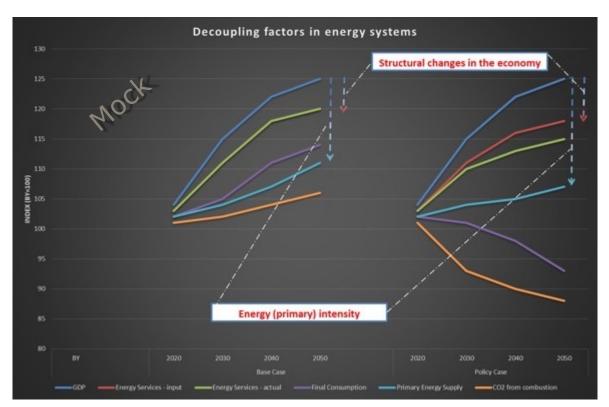
- Понимание того, как энергия используется в системе/секторах

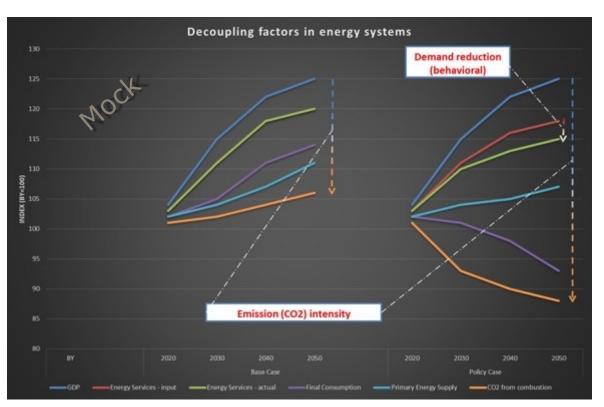
the European Union


Помимо энергетического баланса нужна информация о конечном потреблении.

- Определение методологии/обоснования оценки

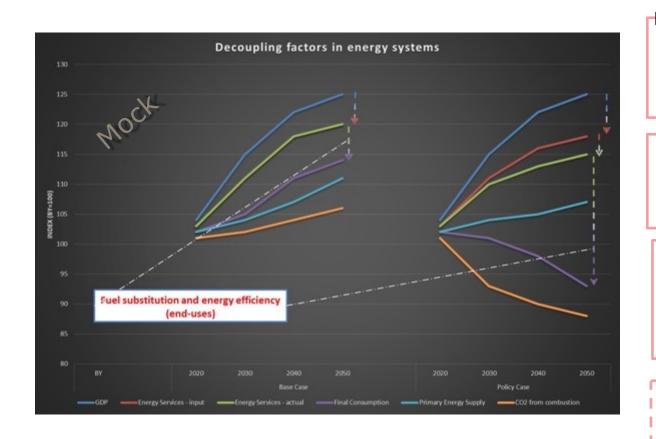
- Сбор информации (статистика/опросы/измерения/базы данных,..)


Отбор и оценка альтернативы (ключевым моментом является четкость технологии)


- Изучение и проектировка энергетических переменных («триггеры» ЭЭ и другие факторы): моделирование

Раскрытие и понимание показателей энергоэффективности

Важность отделения понятий «повышения эффективности» от «структурных изменений» экономики и поведенческих изменений



Ожидается, что экономика и население Узбекистана будут расти высокими темпами, более 4% и 1,5% соответственно. В связи с этим существует проблема неудовлетворенного спроса!

Раскрытие и понимание показателей энергоэффективности

Примеры:

Конечное энергопотребление на душу населения (т.н.э./на душу населения)

Энергопотребление для отопления жилых помещений (на кв. м)

Энергоемкость пассажирского транспорта (на пасскм)

Конечное энергопотребление на домохозяйство (т.н.э/домохозяйство)

Энергопотребление для отопления прочих помещений (на кв. м)

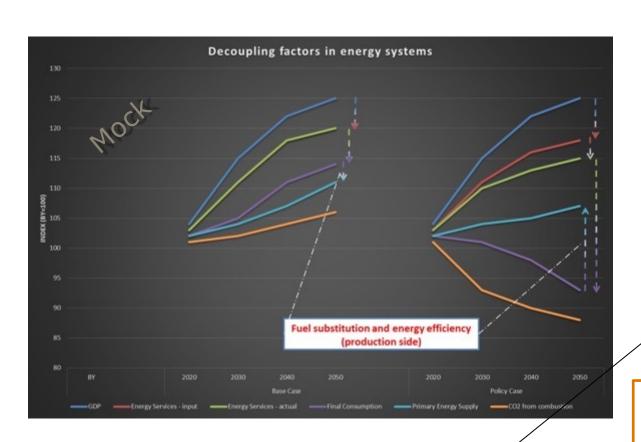
Энергоемкость грузового транспорта (на т-км)

Конечное энергопотребление на добавленную стоимость в расчете на сектор (т.н.э/млн долл. США

Энергопотребление для бытового освещения (на жилое помещение) Энергопотребление для производства цемента (т.н.э./т)

Электрические автомобили vs. Автомобили на биотопливе (по цепочке)

Энергопотребление для общественного освещения (за номер)


Энергопотребление для производства чугуна и стали (т.н.э./т)

Необходимо внимательно рассматривать относительные показатели!

Раскрытие и понимание показателей энергоэффективности

Примеры:

Поставка первичной энергии на душу населения (т.н.э./на душу населения)

Эффективность производства тепловой электроэнергии

Выбросы СО2 в энергетическом секторе на единицу произведенной электроэнергии (кгСО2/кВтч)

Энергоемкость первичной энергии (т.н.э/тыс. долл. США)

Эффективность передачи и распределения электроэнергии

Интенсивность выбросов СО2 на единицу поставок первичной энергии (кг СО2 от источников энергии / долл. США ВВП)

Соотношение первичной энергии к конечной

(т.н.э./ т.н.э.) Наилучшее = 1 Эффективность распределения централизованного теплоснабжения

Углеродоемкость на добавленную стоимость (кгСО2/\$)

Электрические автомобили vs. автомобили на биотопливе

(по цепочке)

Средний коэффициент мощности традиционных электростанций

H2 vs. электричество в промышленности

(по цепочке)

Необходимо внимательно рассматривать относительные показатели!

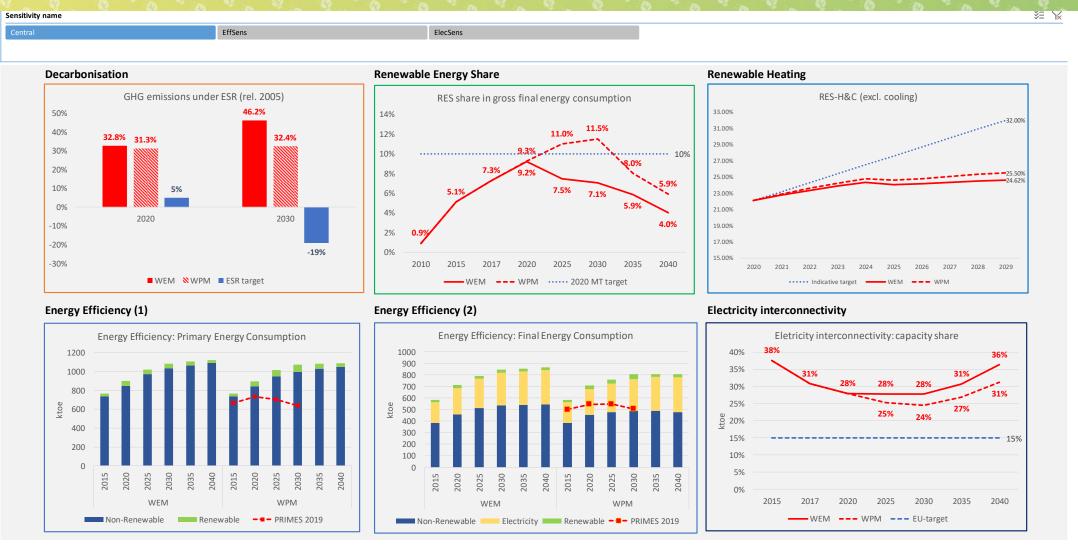
Отдельные показатели могут вести к неверным выводам!

1,4<У3 <1,55 K3>1,65 EC (в среднем): 1,35

ОБЩИЕ РАМКИ ДЛЯ КОМПЛЕКСНЫХ НАЦИОНАЛЬНЫХ ПЛАНОВ ПО ЭНЕРГЕТИКЕ И КЛИМАТУ

РАЗДЕЛ А: НАЦИОНАЛЬНЫЙ ПЛАН

- 1. ОБЗОР И ПРОЦЕСС РАЗРАБОТКИ ПЛАНА
- 2. НАЦИОНАЛЬНЫЕ ЦЕЛИ И ЦЕЛЕВЫЕ ПОКАЗАТЕЛИ
- 3. ПОЛИТИКИ И МЕРЫ


РАЗДЕЛ В: АНАЛИТИЧЕСКАЯ ОСНОВА

- 4. ТЕКУЩАЯ СИТУАЦИЯ И ПРОГНОЗЫ С УЧЕТОМ СУЩЕСТВУЮЩИХ ПОЛИТИК И МЕР
- 5. ОЦЕНКА ВОЗДЕЙСТВИЯ ПЛАНИРУЕМЫХ ПОЛИТИК И МЕР

Список параметров и переменных, НЭБ, ключевые показатели

