



# ТЕХНИЧЕСКИЕ СОВЕЩАНИЯ ПО ЭЛЕКТРОМОБИЛЬНОСТИ И СОЛНЕЧНОМУ ВОДОНАГРЕВАНИЮ

12 ноября 2025 Гостиница Hyatt Regency, Душанбе

Оценка солнечного потенциала крыш в Таджикистане (Фотоэлектрические установки и солнечные водонагреватели)

Мансур Кудусов, Старший эксперт по энергетике Дариус Краучюнас, Руководитель рабочей группы







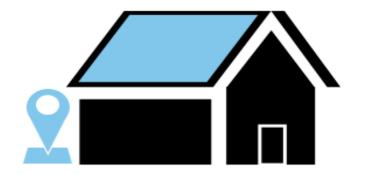






## Основные принципы оценки солнечного потенциала крыш

При оценке целесообразности применения фотоэлектрических панелей (solar photovoltaic panels) на строительных конструкциях, например, крышах, следует учитывать пять основных принципов


- Во-первых, следует оценить общую площадь, доступную на крышах зданий.
- Второй принцип заключается в том, что необходимо рассчитать общую площадь, подходящую для установки фотоэлектрических панелей на крыше.
- Третий принцип заключается в том, что следует оценить солнечную радиацию, доступную на крышах зданий.
- **Четвертый** и **пятый** принципы связаны с техническими и экономическими аспектами, то есть с общим объемом полезного производства электроэнергии интегрированными солнечными панелями на крыше и соответствующими инвестиционными затратами, соответственно.



Физический потенциал



Географический потенциал



Технический потенциал



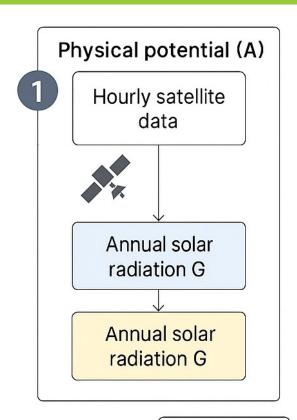


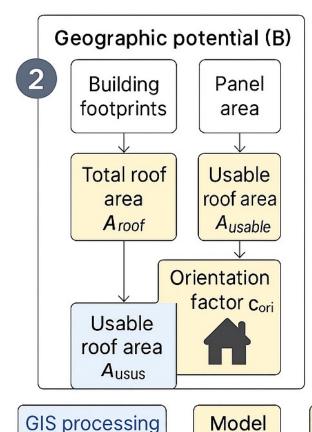


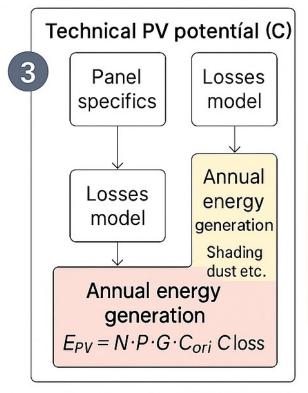


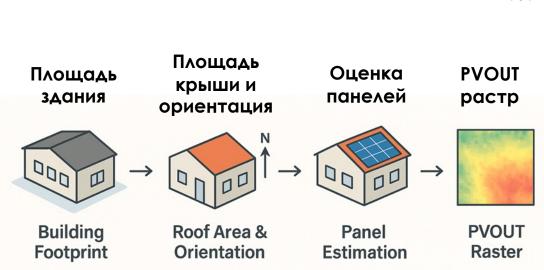







## Методология оценки потенциала солнечной фотоэлектрической энергии на крыше









Входные данные

Legend

ГИС-обработка

Input dataset

Модель

Промежуточный результат Окончательный результат

Final result

Приложение 2 содержит подробное описание методологии оценки технического и экономического потенциала

Intermediate result















## Физический потенциал

СУММАРНАЯ СОЛНЕЧНАЯ РАДИАЦИЯ
НА ГОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬ

ТАДЖИКИСТАН

ТОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬ

ТАДЖИКИСТАН

ТОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬ

ТОРИЗОНТЬ

ТОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬ

ТОРИЗОНТАЛЬНУЕНТЬ

ТОРИЗОННЯ

ТОРИЗОННЯ

ТОРИЗОННЯ

ТОРИЗОННЯ

ТОРИЗОНТЬ

ТОРИЗОНТЬ

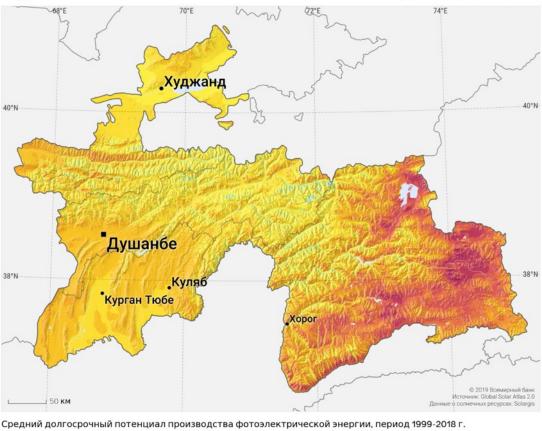
ТОРИЗОННЯ

ТОРИ

Средняя долгосрочная суммарная солнечная радиация на горизонтальную поверхность, период 1999-2018 г. Суммарные дневные значения: 3.2 3.6 4.0 4.4 4.8 5.2

Суммарные годовые значения: 1168 1314 1461 1607 1753 1899

КАРТА СОЛНЕЧНЫХ РЕСУРСОВ
ПОТЕНЦИАЛ ПРОИЗВОДСТВА
ФОТОЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
ТАДЖИКИСТАН








Физический потенциал





Суммарные годовые значения: 1022 1168 1314 1461 1607 1753 1899 2045

Карта опубликована Группой Всемирного банка при финансовой поддержке ESMAP, подготовлена организацией Solargis. Более подробную информацию и условия использования см. на веб-сайте <a href="http://globalsolaratlas.info">http://globalsolaratlas.info</a>.



Душанбе

Курган Тюбе



Карта опубликована Группой Всемирного банка при финансовой поддержке ESMAP, подготовлена организацией Solargis. Более подробную информацию и условия использования см. на веб-сайте <a href="http://globalsolaratlas.info">http://globalsolaratlas.info</a>.











## Географический потенциал



Географический потенциал



Контуры зданий (набор данных Microsoft) Общая площадь крыши (коэффициент полезного использования = 0.85)

Полезная площадь крыши и ориентация здания



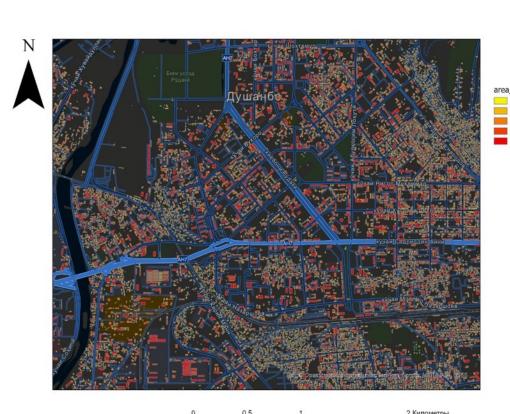













## Оценка площади крыш

## Распределение полезной площади крыш и количества зданий по регионам

| Регион             | Полезная<br>площадь,<br>(м2) | Количество<br>зданий |
|--------------------|------------------------------|----------------------|
| г. Душанбе         | 29,455,844                   | 191,261              |
| Районы             |                              |                      |
| республиканского   |                              |                      |
| подчинения         | 136,354,229                  | 1,053,914            |
| Согдийская область | 180,635,049                  | 1,263,690            |
| Хатлонская область | 137,980,837                  | 1,138,296            |
| Горно-Бадахшанская |                              |                      |
| автономная область | 2,415,521                    | 16,943               |
| Всего              | 486,841,480                  | 3,664,104            |

## Карта площадей крыш





















## Параметры и распределение крыш

### Средняя полезная площадь крыши (м2)



### Общая площадь крыш на человека (м2/человек)



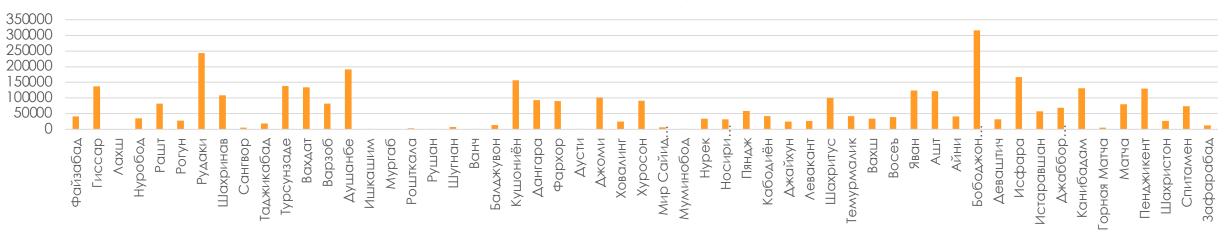




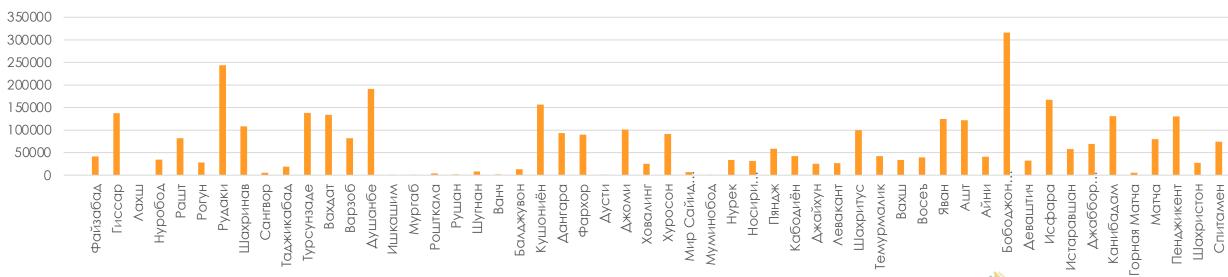











## Распределение полезной площади крыш и количества зданий по районам





#### Площадь крыш, м2

















## Расчеты технического потенциала

#### Характеристики панелей

- Мощность (Р, кВт)
- Раэмеры (Длина × Ширина, наклон = 30°)

Расчёт плошади панелей (с учётом наклона)

Расчёт установки

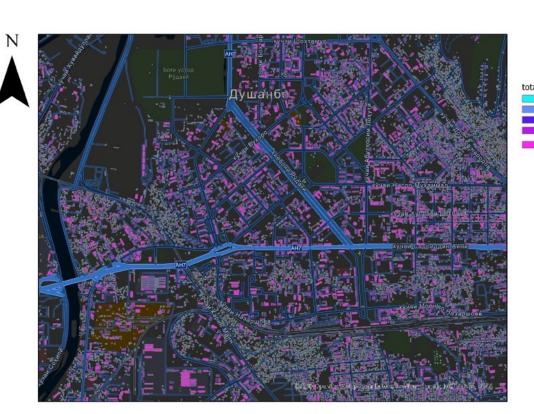
Расчёт генерации энергии Ежегодная генерация энергии ( $E_{PV}$ , кВтч/год)

## $E_{PV} = N \times P \times PV_{OUT} \times C_{ODH}$

 $E_{\text{PV}}$  = ежегодная генерация энергии

N = число солнечных панелей

Р = мощность одной панели (кВт)


 $PV_{\text{out}} =$ ежегодная солнечная радицация (кВтч/м²/год)

 $C_{\text{ори}} = \text{коэффициент ориентации}$  (оптимальное выравнивание по азимту)

## Технический потенииал



### Карта установленных мощностей

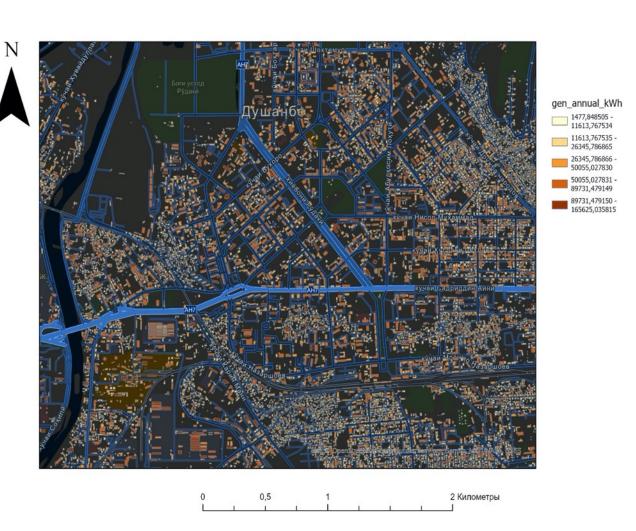


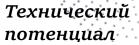













## Технический потенциал

### Карта годовой генерации







## Распределение общей мощности и годовой генерации

| Регион         | Общая мощность, ГВт | Годовая генерация,<br>ГВт*ч год |
|----------------|---------------------|---------------------------------|
| Районы         |                     |                                 |
| республиканско |                     |                                 |
| ГО ПОДЧИНЕНИЯ  | 15,11               | 13774,92                        |
| г. Душанбе     | 3,27                | 3028,848                        |
| Горно-         |                     |                                 |
| Бадахшанская   |                     |                                 |
| автономная     |                     |                                 |
| область        | 0,27                | 236,1535                        |
| Хатлонская     |                     |                                 |
| область        | 15,28               | 13628,85                        |
| Согдийская     |                     |                                 |
| область        | 20,05               | 17182,05                        |
| Итого          | 53,97               | 47850,81                        |















## Сводные результаты технической оценки



Технический потенциал



Оценочная генерация



Полезная площадь крыш



Количество зданий

54 ГВт

47.8 ТВт ч

307 km2

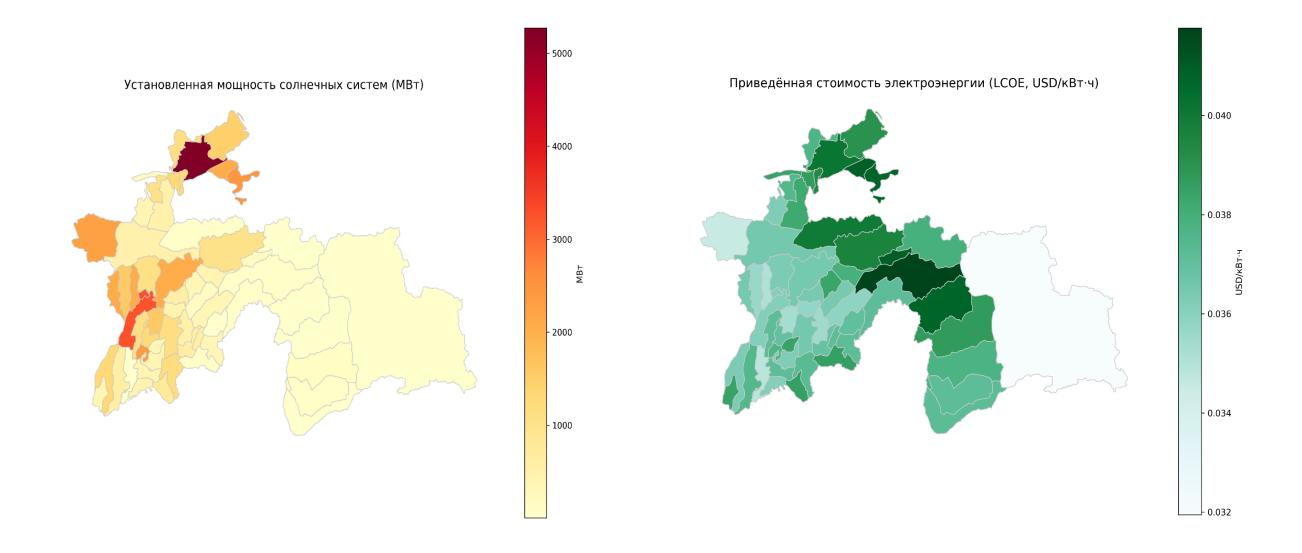
3 664 104

По сравнению с прогнозируемым годовым потреблением электроэнергии в Таджикистане в 15,2 ТВт ч в 2024 году, солнечные батареи на крышах представляют собой значительный потенциал для страны
















# Пространственное распределение установленной мощности (ГВт) и средних значений LCOE по районам.

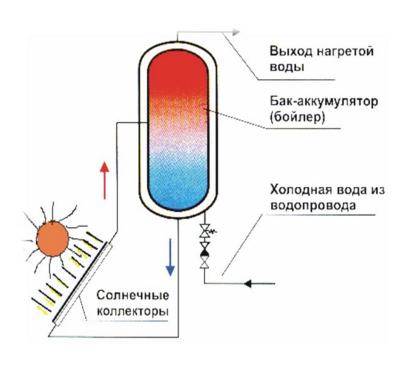




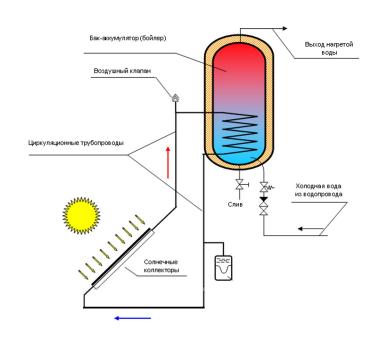











## СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ СИСТЕМЫ





Одноконтурное с естественной циркуляцией (термосифонные)

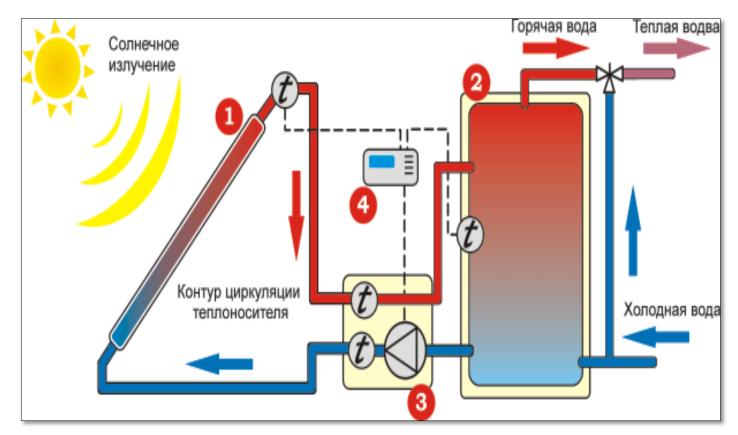


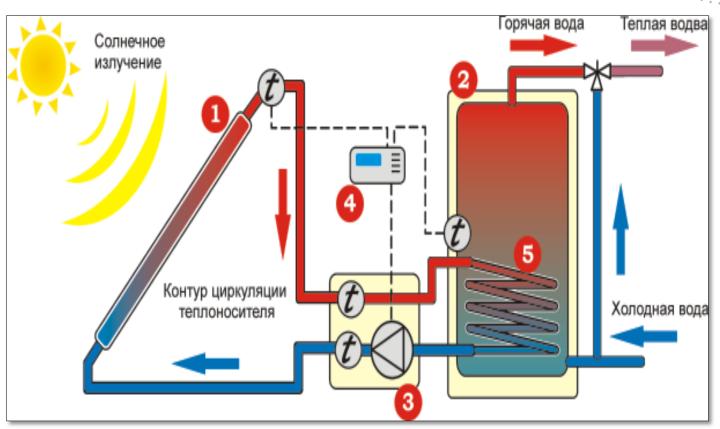
Двухконтурные с естественной циркуляцией (термосифонные)














## СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ СИСТЕМЫ





Одноконтурное с принудительной циркуляцией

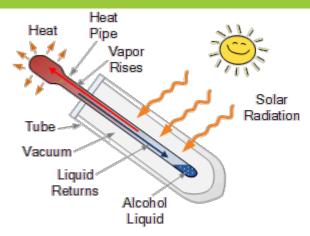
Двухконтурные с принудительной циркуляцией

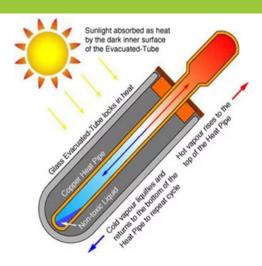


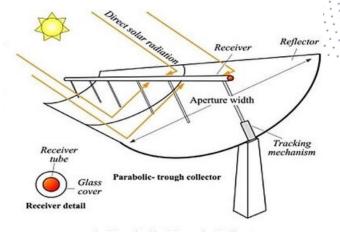









## СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ СИСТЕМЫ

















Плоский солнечный коллектор

Вакуумный трубчатый коллектор тип Heat-Pipe

Вакуумный трубчатый коллектор тип U-Tube

Концентрирующие системы















# Сравнительная оценка применимости технологий солнечных тепловых коллекторов для объектов жилой и социальной инфраструктуры Республики Таджикистан

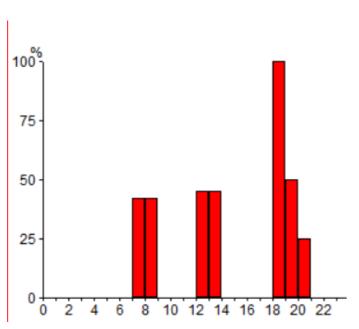
| Критерий                                                     | Плоский солнечный коллектор<br>(Flat Plate Collector, FPC)                         | Вакуумный трубчатый коллектор<br>— тип Heat-Pipe (ETC-HP)                                           | Вакуумный трубчатый коллектор<br>— тип U-Tube (ETC-U)                                          | Концентрирующие системы (СРС / РТС)                                |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Тип поглощаемого<br>излучения                                | Эффективен при прямом и рассеянном излучении                                       | Эффективен при прямом и рассеянном излучении                                                        | Эффективен при прямом излучении, менее чувствителен к углу падения                             | Требует прямого излучения (DNI)                                    |
| Оседание пыли на<br>поверхности                              | Существенно влияет, необходима регулярная очистка                                  | Частично самосчищается за счёт цилиндрической формы труб                                            | Требует периодической очистки внутренней части при длительной эксплуатации                     | Очень высокая чувствительность; требуется частая мойка отражателей |
| Работа в зимний период                                       | Снижение эффективности из-за теплопотерь и обмерзания                              | Высокая эффективность благодаря<br>вакуумной изоляции                                               | Хорошая теплопроизводительность, но риск повреждения при замерзании                            | Эффективность резко снижается при низком солнце и снеговом покрове |
| Рабочий температурный диапазон                               | 45-70 °C (типичные системы ГВС)                                                    | 60–120 °C (медицинские и гостиничные объекты)                                                       | 50–100 °C (непрерывные нагрузки, бассейны)                                                     | > 120 °C (промышленное тепло, пар)                                 |
| Эксплуатационные<br>требования                               | Простое обслуживание, подходит для персонала без инженерной квалификации           | Требуется периодический контроль<br>теплоносителя и давления                                        | Требует квалифицированного обслуживания и проверки герметичности                               | Требуется инженерный персонал и<br>система слежения за солнцем     |
| Конструктивная нагрузка на кровлю                            | Низкая, равномерно<br>распределённая                                               | Умеренная, с точечными нагрузками<br>на опоры                                                       | Умеренная; требует точного выравнивания труб                                                   | Высокая (тяжёлые трекеры и<br>отражатели)                          |
| Совместимость с инфраструктурой школ и жилых домов           | Высокая— оптимально для жилых и образовательных зданий                             | Средняя— при наличии<br>эксплуатационной службы                                                     | Ограниченная— для специализированных учреждений с постоянным потреблением                      | Низкая— нецелесообразно для<br>стандартных зданий                  |
| Экономическая<br>целесообразность в<br>условиях Таджикистана | Выгодны в тёплых и долинных районах с умеренной запылённостью и доступом к очистке | Оптимальны для большинства регионов, включая горные и пыльные, при наличии обслуживающего персонала | Перспективны в холодных районах с<br>высокой потребностью в ГВС при<br>надлежащем обслуживании | Не рекомендованы — высокая<br>стоимость, требовательность к DNI    |
| Рекомендуемые зоны<br>внедрения                              | Жилые дома, школы, детские сады, административные здания                           | Больницы, спорткомплексы, интернаты, гостиницы, горные районы                                       | Санатории, учреждения с<br>круглогодичным ГВС, бассейны                                        | Промышленные предприятия, технологическое тепло                    |

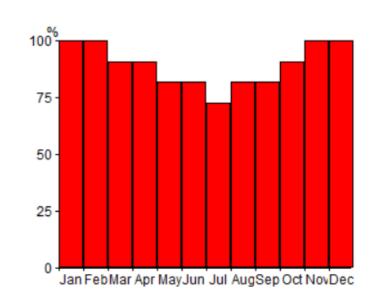













## Моделирование СВС (без дополнительного нагрева)







| Показатель                                     | Значение            |
|------------------------------------------------|---------------------|
| Среднесуточное<br>потребление                  | 160 ∧               |
| Годовое потребление                            | 58 400 A            |
| Максимальное<br>суточное потребление           | 189 ∧               |
| Требуемая<br>температура воды                  | 60,0 °C             |
| Температура<br>холодной воды (мин. /<br>макс.) | 14,0 °C / 22,0 °C   |
| Годовая потребность в<br>энергии               | 7 752 372 193 Дж    |
| Количество дней работы в году                  | 365 дней            |
| Периоды неработы                               | — без ограничений — |
| Циркуляция                                     | отсутствует         |















## Экономические параметры СВС

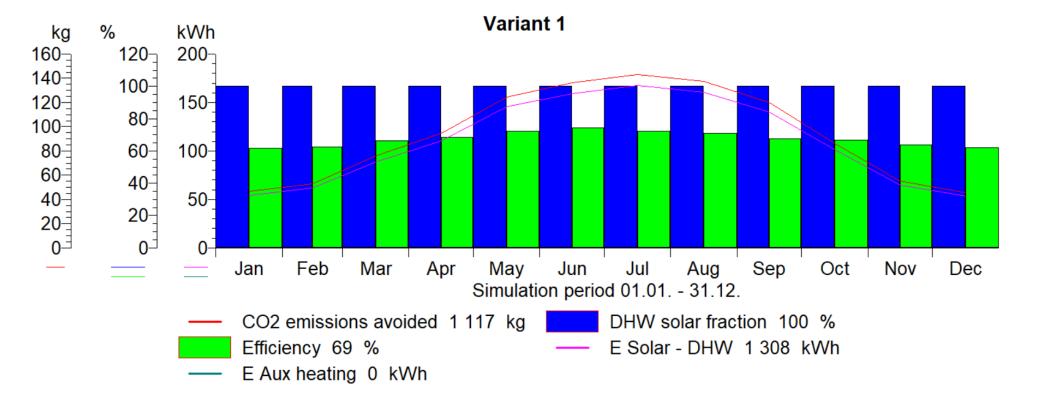
| Параметр                                            | 3начение                                    | Единица измерения | Описание                                                |
|-----------------------------------------------------|---------------------------------------------|-------------------|---------------------------------------------------------|
| Срок службы системы (Life span)                     | 20                                          | лет               | Продолжительность эксплуатации системы                  |
| Процент на капитал (Interest on capital)            | 10                                          | %                 | Годовая процентная ставка на инвестированный капитал    |
| Доходность реинвестиций (Reinvestment return)       | 0                                           | %                 | Доход от повторно инвестированных<br>средств            |
| Удельные инвестиции (Spec. Investments – Collector) | ввод пользователя                           | USD/m²            | Инвестиционные затраты на единицу площади коллектора    |
| Удельная субсидия (Spec. Subsidy)                   | 0                                           | USD/m²            | Субсидия на единицу площади коллектора                  |
| Рост цен на энергию (Energy)                        | 0 % (электричество), 0 %<br>(природный газ) | %                 | Ежегодный прирост тарифов на энергию                    |
| Рост эксплуатационных затрат (Running costs)        | 0                                           | %                 | Годовой прирост эксплуатационных расходов               |
| Размер поощрения (Amount)                           | 0                                           | USD/kWh           | Премия за каждый выработанный кВт ч<br>солнечного тепла |
| Продолжительность выплат (Payout Duration)          | 0                                           | Λ <b>e</b> T      | Период действия субсидий                                |
| Индексирование выплат (Adjustment)                  | 0                                           | %/год             | Годовое увеличение размера<br>поощрения                 |
| Затраты на обслуживание (Maintenance costs)         | 2 % ot CAPEX                                | USD/год           | Ежегодные расходы на техническое обслуживание           |
| Страхование (Insurance)                             | 1 % ot CAPEX                                | USD/год           | Ежегодные страховые взносы                              |
| Прочие расходы (Other costs)                        | 0                                           | USD/год           | Прочие ежегодные расходы                                |
| Сумма кредита (Loan amount)                         | 0                                           | USD               | Общая сумма кредита                                     |
| Процентная ставка по кредиту (Interest rate)        | 0                                           | %                 | Годовая процентная ставка по кредиту                    |
| Срок кредита (Loan term)                            | 0                                           | Λ <del>Ο</del> Τ  | Продолжительность кредитного периода                    |
















## Энергетические результаты моделирования





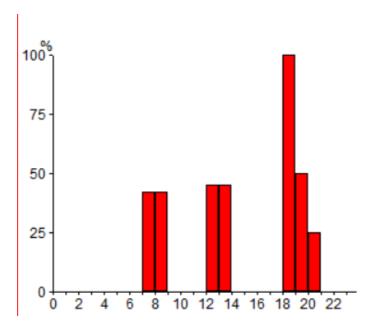
| Показатель                            | 3начение       |
|---------------------------------------|----------------|
| Стоимость<br>солнечной энергии        | 0,049 \$/кВт ч |
| Оставшийся объём<br>инвестиций        | 550 \$         |
| Срок окупаемости капитальных вложений | 8,7 года       |
| Амортизационный<br>период             | 18,7 года      |

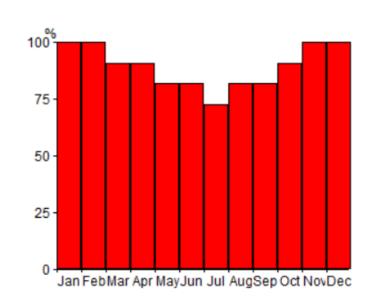











# Моделирование СВС (с учётом дополнительного нагрева)







| Показатель                                     | 3начение            |
|------------------------------------------------|---------------------|
| Среднесуточное<br>потребление                  | 160 ∧               |
| Годовое потребление                            | 58 400 A            |
| Максимальное<br>суточное потребление           | 189 ∧               |
| Требуемая<br>температура воды                  | 60,0 °C             |
| Температура<br>холодной воды (мин. /<br>макс.) | 14,0 °C / 22,0 °C   |
| Годовая потребность в<br>энергии               | 7 752 372 193 Дж    |
| Количество дней работы в году                  | 365 дней            |
| Периоды неработы                               | — без ограничений — |
| Циркуляция                                     | отсутствует         |















## Экономические параметры СВС

| Параметр                                            | 3начение                                    | Единица измерения | Описание                                                |
|-----------------------------------------------------|---------------------------------------------|-------------------|---------------------------------------------------------|
| Срок службы системы (Life span)                     | 20                                          | лет               | Продолжительность эксплуатации системы                  |
| Процент на капитал (Interest on capital)            | 10                                          | %                 | Годовая процентная ставка на инвестированный капитал    |
| Доходность реинвестиций (Reinvestment return)       | 0                                           | %                 | Доход от повторно инвестированных<br>средств            |
| Удельные инвестиции (Spec. Investments – Collector) | ввод пользователя                           | USD/m²            | Инвестиционные затраты на единицу площади коллектора    |
| Удельная субсидия (Spec. Subsidy)                   | 0                                           | USD/m²            | Субсидия на единицу площади коллектора                  |
| Рост цен на энергию (Energy)                        | 0 % (электричество), 0 %<br>(природный газ) | %                 | Ежегодный прирост тарифов на энергию                    |
| Рост эксплуатационных затрат (Running costs)        | 0                                           | %                 | Годовой прирост эксплуатационных расходов               |
| Размер поощрения (Amount)                           | 0                                           | USD/kWh           | Премия за каждый выработанный кВт ч<br>солнечного тепла |
| Продолжительность выплат (Payout Duration)          | 0                                           | лет               | Период действия субсидий                                |
| Индексирование выплат (Adjustment)                  | 0                                           | %/год             | Годовое увеличение размера<br>поощрения                 |
| Затраты на обслуживание (Maintenance costs)         | 2 % ot CAPEX                                | USD/год           | Ежегодные расходы на техническое обслуживание           |
| Страхование (Insurance)                             | 1 % ot CAPEX                                | USD/год           | Ежегодные страховые взносы                              |
| Прочие расходы (Other costs)                        | 0                                           | USD/год           | Прочие ежегодные расходы                                |
| Сумма кредита (Loan amount)                         | 0                                           | USD               | Общая сумма кредита                                     |
| Процентная ставка по кредиту (Interest rate)        | 0                                           | %                 | Годовая процентная ставка по кредиту                    |
| Срок кредита (Loan term)                            | 0                                           | лет               | Продолжительность кредитного периода                    |

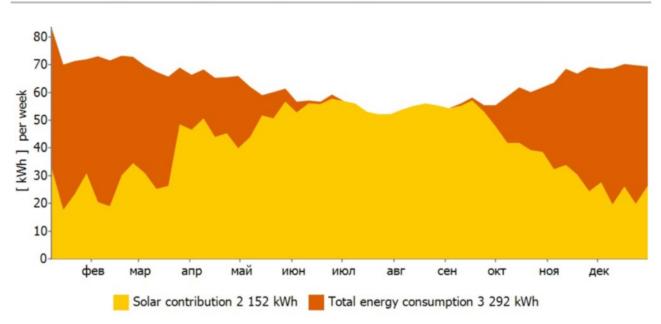




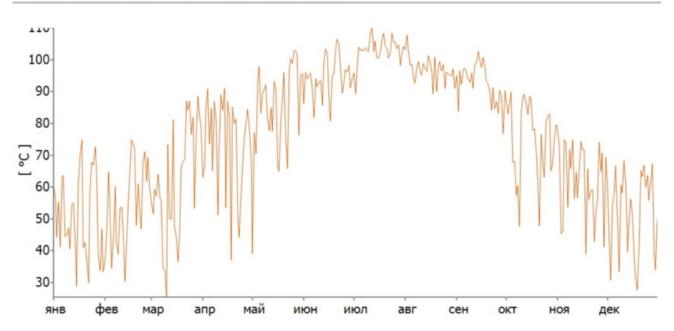












# **Использование солнечной энергии в структуре общего потребления**



#### Solar energy consumption as percentage of total consumption



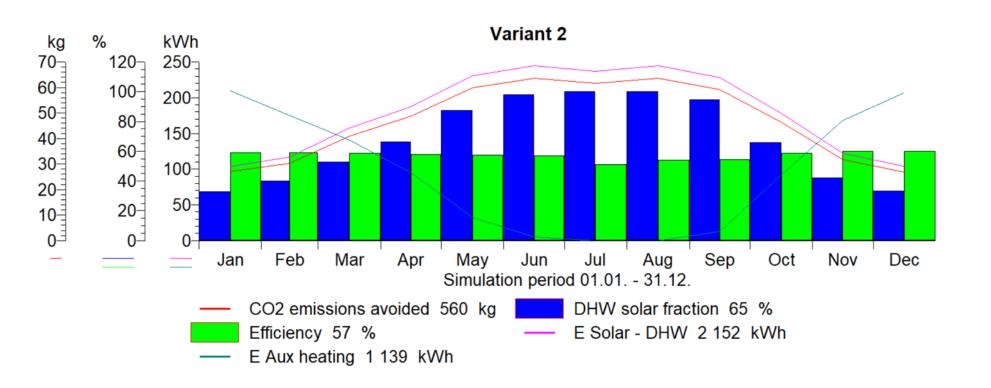
#### Daily maximum collector temperature


















## Энергетические результаты моделирования





Стоимость солнечной энергии Оставшийся объём

инвестиций

650 \$

0,053 \$/кВт ч

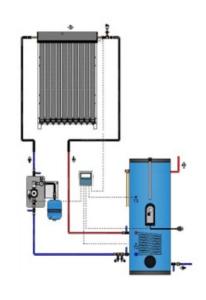




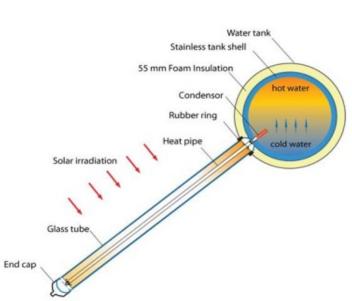












## АНАЛИЗ ПОТЕНЦИАЛА ВИЭ

## **Split type Solar Water Heater**









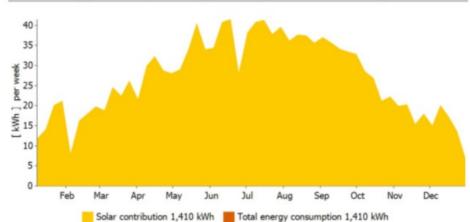















## Оптимизация конфигурации солнечных водонагревательных систем



#### Solar energy consumption as percentage of total consumption







|                             |                                     |                      |             |                                |                                       |                     |         |                    | • • •                |
|-----------------------------|-------------------------------------|----------------------|-------------|--------------------------------|---------------------------------------|---------------------|---------|--------------------|----------------------|
| P50                         |                                     |                      |             |                                |                                       |                     |         |                    |                      |
| Tank<br>Capacity<br>(liter) | Daily water<br>usage<br>(liter/day) | Number of Collectors | COE, \$/kwh | Solar<br>contribution<br>(kWh) | total energy<br>consumptio<br>n (kWh) | Difference<br>(kWh) |         | Payback<br>(years) | Total price<br>(USD) |
| 200                         | 100                                 | 1                    | 0.017       | 1342                           | 1342                                  | 0                   | Optimal | 9.9                | 650                  |
| 400                         | 100                                 | 2                    | 0.02        | 2306                           | 2306                                  | 0                   |         | 11.3               | 1300                 |
| 600                         | 100                                 | 3                    | 0.024       | 2870                           | 2870                                  | 0                   |         | 13.4               | 1950                 |
| 800                         | 100                                 | 4                    | 0.028       | 3348                           | 3348                                  | 0                   |         | 15                 | 2600                 |
| 1000                        | 100                                 | 5                    | 0.031       | 3756                           | 3756                                  | 0                   |         | 16.5               | 3250                 |
|                             |                                     |                      |             |                                |                                       |                     |         |                    |                      |
| Tank                        | Daily water                         |                      |             | Solar                          | total energy                          |                     |         |                    |                      |
| Capacity<br>(liter)         | usage<br>(liter/day)                | Number of Collectors | COE, \$/kwh | contribution (kWh)             |                                       | Difference<br>(kWh) |         | Payback<br>(years) | Total price<br>(USD) |
| 200                         | 150                                 | 1                    | 0.016       | 1410                           | 1410                                  | 0                   | Optimal | 9.4                | 650                  |
| 400                         | 150                                 | 2                    | 0.018       | 2631                           | 2631                                  | 0                   |         | 10.1               | 1300                 |
| 600                         | 150                                 | 3                    | 0.021       | 3353                           | 3353                                  | 0                   |         | 11.6               | 1950                 |
| 800                         | 150                                 | 4                    | 0.024       | 3895                           | 3895                                  | 0                   |         | 13.2               | 2600                 |
| 1000                        | 150                                 | 5                    | 0.027       | 4340                           | 4340                                  | 0                   |         | 14.5               | 3250                 |
|                             |                                     |                      |             |                                |                                       |                     |         |                    |                      |
| Tank                        | Daily water                         |                      |             | Solar                          | total energy                          |                     |         |                    |                      |
| Capacity<br>(liter)         | usage<br>(liter/day)                | Number of Collectors | COE, \$/kwh | contribution (kWh)             | consumptio<br>n (kWh)                 | Difference<br>(kWh) |         | Payback<br>(years) | Total price<br>(USD) |
| 200                         | 200                                 | 1                    | 0.016       | 1410                           | 1410                                  | 0                   | Optimal | 9.4                | 650                  |
| 400                         | 200                                 | 2                    | 0.016       | 2863                           | 2863                                  | 0                   | _       | 9.3                | 1300                 |
| 600                         | 200                                 | 3                    | 0.019       | 3743                           | 3743                                  | 0                   |         | 10.5               | 1950                 |
| 800                         | 200                                 | 4                    | 0.021       | 4393                           | 4393                                  | 0                   |         | 11.8               | 2600                 |
| 1000                        | 200                                 | 5 (                  | ) Star      | ite <sup>201</sup>             | G4901                                 | 10                  | (X)     | 13.1               | E 3250 SCHI          |

ACTED





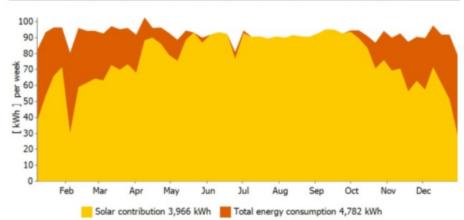
|                                 |                                  |                      |             | •                        |                                |            |         |
|---------------------------------|----------------------------------|----------------------|-------------|--------------------------|--------------------------------|------------|---------|
| P90<br>Tank Capacity<br>(liter) | Daily water usage<br>(liter/day) | Number of Collectors | COE, \$/kwh | Solar contribution (kWh) | total energy consumption (kWh) | Difference |         |
| 200                             | 100                              | 1                    | 0.033       | 1536                     | 2310                           | 774        |         |
| 400                             | 100                              | 2                    | 0.029       | 2323                     | 2836                           | 513        | Optimal |
| 600                             | 100                              | 3                    | 0.031       | 2824                     | 3254                           | 430        |         |
| 800                             | 100                              | 4                    | 0.034       | 3284                     | 3640                           | 356        |         |
| 1000                            | 100                              | 5                    | 0.036       | 3713                     | 4017                           | 304        |         |
|                                 |                                  |                      |             |                          |                                |            |         |
|                                 |                                  |                      |             |                          |                                |            |         |
|                                 |                                  |                      |             |                          |                                |            |         |
| Tank Capacity                   | Daily water usage                | Number of            |             |                          | total energy consumption       |            |         |
| (liter)                         | (liter/day)                      | Collectors           | COE, \$/kwh | Solar contribution (kWh) | (kWh)                          | Difference |         |
| 200                             | 150                              | 1                    | 0.038       | 1719                     | 2972                           | 1253       |         |
| 400                             | 150                              | 2                    | 0.027       | 2763                     | 3541                           | 778        | Optimal |
| 600                             | 150                              | 3                    | 0.028       | 3328                     | 3944                           | 616        |         |
| 800                             | 150                              | 4                    | 0.031       | 3809                     | 4322                           | 513        |         |
| 1000                            | 150                              | 5                    | 0.033       | 4250                     | 4680                           | 430        |         |
|                                 |                                  |                      |             |                          |                                |            |         |
|                                 |                                  |                      |             |                          |                                |            |         |
|                                 |                                  |                      |             |                          |                                |            |         |
| Tank Capacity                   | Daily water usage                | Number of            |             |                          | total energy consumption       |            |         |
| (liter)                         | (liter/day)                      | Collectors           | COE, \$/kwh | Solar contribution (kWh) | (kWh)                          | Difference |         |
| 200                             | 200                              | 1                    | 0.044       | 1846                     | 3544                           | 1698       |         |
| 400                             | 200                              | 2                    | 0.027       | 3145                     | 4241                           | 1096       | Optimal |
| 600                             | 200                              | 3                    | 0.027       | 3807                     | 4662                           | 855        |         |
| 800                             | 200                              | 4                    | 0.028       | 4337                     | 5030                           | 693        |         |
| 1000                            | 200                              | 5                    | 0.029       | 4830                     | 5373                           | 543        |         |














# \* Glob**a**НАЛИЗ ПОТЕНЦИАЛА ВИЭ \*\* Gateway



#### Solar energy consumption as percentage of total consumption







| P50           |                   |            |             |                |              |            |         |         |                                     |
|---------------|-------------------|------------|-------------|----------------|--------------|------------|---------|---------|-------------------------------------|
|               |                   |            |             | Solar          | total energy |            |         |         |                                     |
| Tank Capacity | Daily water usage | Number of  |             |                | consumptio   |            |         | Payback |                                     |
| (liter)       | (liter/day)       | Collectors | COE, \$/kwh | (kWh)          | n (kWh)      | Difference |         | (years) | Total price                         |
| 200           | 100               | 1          | 0.045       | 1302           | 3705         | 2403       |         |         | 1397                                |
| 200           | 100               | 2          | 0.025       | 2653           | 3935         | 1282       |         |         | 1785                                |
| 200           | 100               | 3          | 0.023       | 3457           | 4259         | 802        | Optimal | 9.5     | 2173                                |
| 200           | 100               | 4          | 0.024       | 3777           | 4395         | 618        |         |         | 2561                                |
| 200           | 100               | 5          | 0.026       | 3975           | 4473         | 498        |         |         | 2949                                |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             | Solar          | total energy |            |         |         |                                     |
| Tank Capacity | Daily water usage | Number of  |             | contribution   | consumptio   |            |         | Payback |                                     |
| (liter)       | (liter/day)       | Collectors | COE, \$/kwh | (kWh)          | n (kWh)      | Difference |         | (years) | Total price                         |
| 200           | 150               | 1          | 0.042       | 1433           | 4558         | 3125       |         |         | 1397                                |
| 200           | 150               | 2          | 0.023       | 2873           | 4751         | 1878       |         |         | 1785                                |
| 200           | 150               | 3          | 0.02        | 3883           | 5050         | 1167       | Optimal | 8.5     | 2173                                |
| 200           | 150               | 4          | 0.021       | 4307           | 5202         | 895        |         |         | 2561                                |
| 200           | 150               | 5          | 0.023       | 4546           | 5291         | 745        |         |         | 2949                                |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             |                |              |            |         |         |                                     |
|               |                   |            |             | Solar          | total energy |            |         |         |                                     |
| Tank Capacity | Daily water usage | Number of  |             | contribution   | consumptio   |            |         | Payback |                                     |
| (liter)       | (liter/day)       | Collectors | COE, \$/kwh | (kWh)          | n (kWh)      | Difference |         | (years) | Total price                         |
| 200           | 200               | 1          | 0.041       | 1514           | 5424         | 3910       |         |         | 1397                                |
| 200           | 200               | 2          | 0.023       | 3034           | 5575         | 2541       |         |         | 1785                                |
| 200           | 200               | 3          | 0.019       | 4178           | 5856         | 1678       | Optimal | 8       | 2173                                |
| 200           | 200               | 4          | 0.019       | 4740           | 6022         | 1282       |         |         | 2561                                |
| 200           | 200               | 5          | 0.021       | 5036           | 6115         | 1079       |         |         | 2949                                |
|               |                   |            | Stanto      |                |              | K          | X       |         | FLORENCE                            |
|               |                   |            | Stante      | <del>.</del> ( | OPA          | H          |         |         | FLORENCE<br>SCHOOL OF<br>REGULATION |





| TANK 200l (100l/day) | COE, \$/kwh | solar contribution | total energy consumption | difference |         |
|----------------------|-------------|--------------------|--------------------------|------------|---------|
| 1                    | 0.152       | 1244               | 1925                     | 681        |         |
| 2                    | 0.118       | 1779               | 2055                     | 276        | Optimal |
| 3                    | 0.128       | 1943               | 2091                     | 148        |         |
| 4                    | 0.146       | 1992               | 2098                     | 106        |         |
| 5                    | 0.165       | 2019               | 2100                     | 81         |         |
|                      |             |                    |                          | 0          |         |
|                      |             |                    |                          | 0          |         |
|                      |             |                    |                          | 0          |         |
| TANK 200I (150I/day) | COE, \$/kwh | solar contribution | total energy consumption |            |         |
| 1                    | 0.157       | 1408               | 2620                     | 1212       |         |
| 2                    | 0.101       | 2236               | 2759                     | 523        | Optimal |
| 3                    | 0.104       | 2469               | 2779                     | 310        |         |
| 4                    | 0.116       | 2565               | 2792                     | 227        |         |
| 5                    | 0.130       | 2612               | 2795                     | 183        |         |
|                      |             |                    |                          | 0          |         |
|                      |             |                    |                          | 0          |         |
|                      |             |                    |                          | 0          |         |
| TANK 200I (200I/day) | COE, \$/kwh | solar contribution | total energy consumption |            |         |
| 1                    | 0.161       | 1530               | 3166                     | 1636       |         |
| 2                    | 0.090       | 2647               | 3406                     | 759        | Optimal |
| 3                    | 0.090       | 2973               | 3458                     | 485        |         |
|                      |             |                    |                          |            |         |
| 4                    | 0.098       | 3123               | 3484                     | 361        |         |















## Основные выводы

- 1. Таджикистан обладает высоким солнечным потенциалом до 2 200 кВт·ч/м² в год и более 280 солнечных дней, что делает использование солнечных тепловых систем технически оправданным во всех регионах страны.
- 2. Солнечные коллекторы обеспечивают экономию электроэнергии и устойчивое ГВС, особенно в жилом и социальном секторе (дома, школы, больницы, интернаты).
- 3. Экономическая эффективность подтверждена моделированием:
  - Удельная стоимость тепла (COE): 0,016–0,02 USD/кВт·ч
  - Срок окупаемости: 8–10 лет
  - Срок службы систем: более 20 лет
- 4. Экологический эффект: Сокращение выбросов парниковых газов в среднем 0,5–1,0 тонны СО<sub>2</sub>- эквивалента в год на один объект (в зависимости от типа топлива и объёма замещения).
- 5. Наиболее эффективны вакуумные трубчатые коллекторы (Heat Pipe / U-Tube) благодаря высокой теплоизоляции, устойчивости к пыли и работе при низких температурах.
- 6. Массовое внедрение солнечных водонагревателей способствует достижению целей устойчивого развития (ЦУР 7 и 13), повышению энергоэффективности и энергетической независимости страны.















# Приложения















## Приложение 1: Ограничения и оговорки

#### 1. Методологические допущения и упрощения

#### • Отсутствие высотных данных (LiDAR/DSM)

Оценка формы и ориентации крыш выполняется на основе 2D-контуров зданий (данные Microsoft Building Footprints), обработанных методом главных компонент (PCA). Наклон крыш, высотные различия, тени от окружающих объектов и рельеф местности **не учитываются** 

#### • Единая конфигурация солнечной панели

Применяется типовая панель мощностью 400 Вт с размерами 1.775 × 1.098 м и углом наклона 30°. Модель не учитывает различия в технологиях (например, бифасиальные панели), компоновке (портрет/ландшафт), типах креплений и инверторах

#### • Фиксированные параметры установки

Панели предполагается устанавливать с наклоном 30° и южной ориентацией (180°). Коэффициент ориентации рассчитывается через косинусную функцию, ограниченную минимальным значением 0.5. Сезонные изменения угла инсоляции и доля рассеянного излучения не моделируются

#### • Межрядовое расстояние (интерференционные потери)

Расстояние между рядами панелей рассчитывается по углу зимнего солнца (на основе широты). Однако фактическая компоновка панелей, самозатенение и тени от элементов крыши не моделируются

#### • Полезная площадь крыши

Используется коэффициент пригодности крыши 0.85, дополнительно скорректированный по межрядовому расстоянию. Архитектурные элементы (вентиляция, дымоходы, мансардные окна и пр.) не исключаются из расчётов

#### 2. Ограничения исходных данных

#### Контуры зданий

Используются данные Microsoft Building Footprints. Несмотря на их широкое покрытие, в базе могут присутствовать ошибки: дубликаты, фрагментированные здания, неверная классификация или отсутствие данных в сельских/горных районах

#### • Солнечная радиация (PVOUT)

Используются данные SolarGIS в виде растра с долгосрочными усреднёнными значениями глобальной солнечной радиации (GHI) на горизонтальную поверхность. Значения интерполируются по центроидам зданий. Точность снижается при больших или сложных по форме зданиях. PVOUT предполагается равномерным в пределах растровой ячейки

#### • Пространственные преобразования

Многократные переходы между системами координат (WGS84 ightarrow UTM ightarrow CRS растра) могут незначительно искажать геометрию зданий, особенно на границах проекционных зон

#### • Финансово-экономические предположения

Экономические параметры (тарифы, стоимость установки, эксплуатационные расходы) основаны на данных 2025 года















## Приложение 1: Ограничения и оговорки

#### 3. Технические ограничения алгоритма

#### • Оценка азимута зданий

При отсутствии поля азимут ориентация вычисляется с помощью РСА по координатам полигона. Метод может давать искажения для L-образных, П-образных и нестандартных форм крыш.

#### Подсчёт панелей

Число панелей округляется в меньшую сторону. Внутренняя укладка панелей по форме крыши, расположение по рядам, ориентации и допустимые зазоры не моделируются.

#### • Фактическая генерация

Фактическая генерация может отличаться из-за температурных эффектов, пылевых отложений, деградации модулей, неидеального MPPT, потерь на инверторах и т.д.

#### 4. Юридические и организационные оговорки

- Результаты предназначены **исключительно для предварительного анализа** и не могут использоваться как основа для разрешительных процедур или инвестиционных решений без полевого обследования.
- Разработчики и исполнители анализа не несут ответственности за убытки, связанные с использованием предоставленных данных.
- Результаты могут быть уточнены по мере поступления новых данных (LiDAR, обследования, тарифы, сетевые ограничения и пр.).

#### 5. Рекомендации к использованию

- Полевые обследования: проверка структуры крыши, несущей способности, наличия препятствий.
- **Анализ затенения**: с использованием моделей поверхности или БПЛАсъёмки.
- **Экономическая оценка**: учёт актуализированных данных по затратам, тарифам, стоимости инверторов, банковским процентам и пр.
- **Оценка возможностей подключения**: анализ сетевой инфраструктуры, нагрузки и пропускной способности.















## Приложение 2: Методология оценки технического и экономического потенциала

Методология оценки технического и экономического потенциала солнечных фотоэлектрических систем на крышах зданий

#### 1. Источники данных

- Контуры зданий: Microsoft Building Footprints (2023)
- Солнечная радиация: PVOUT.tif (SolarGIS, среднегодовое GHI, пространственное разрешение ~1 км)
- Основные допущения:
- Мощность панели: 400 Вт
- Размер панели: 1.775 × 1.098 м
- Угол наклона: 30°
- Полезная площадь крыши: 85% от общей площади × коэффициент ориентации × коэффициент размещения (рядов)

#### 2. Обработка данных

- Загрузка данных: Векторные файлы (.gpkg) загружаются с использованием GeoPandas. Проверяется наличие столбца area\_m2. Если он отсутствует, используется roof\_area.
- Проверка CRS: Если система координат не указана, предполагается WGS84 (EPSG:4326).
- Фильтрация геометрий: Удаляются невалидные и пустые геометрии. Применяется фильтр по площади: 20 ≤ area\_m2 ≤ 2000.
- Исправление геометрий: Используется метод buffer (0) для устранения топологических ошибок.

#### 3. Геопространственные расчеты

1. Определение UTM-зоны: Зона UTM определяется по формуле:

$${\sf zone} = \lfloor ({\sf lon} + 180)/6 \rfloor + 1, \quad {\sf EPSG} = 32600 + {\sf zone}$$
 где lon — долгота центроида региона.

2. Ориентация крыши: Рассчитывается угол азимута ( $\alpha$ ) через минимальный ограничивающий прямоугольник (MRR):

$$\alpha = \operatorname{atan2}(\Delta y, \Delta x) \mod 180^{\circ}$$

где  $\Delta x, \Delta y$  — разницы координат соседних вершин MRR.

3. Коэффициент ориентации: Коэффициент (korient) вычисляется как:

$$k_{
m orient}=\max\left(\cos\left(0.9\cdot\min(|lpha-lpha_{
m opt}|,360-|lpha-lpha_{
m opt}|)
ight),0.5
ight)$$
 где  $lpha_{
m opt}=180^\circ$ .















## Приложение 2: Методология оценки технического и экономического потенциала

#### 4. Технические расчёты

1. Площадь панели: Площадь одной панели с учётом наклона ( $\theta=30^{\circ}$ ):

$$A_{\text{panel}} = \frac{L_{\text{panel}}}{\text{COS}(\theta)} \cdot W_{\text{panel}}$$

где  $L_{\text{panel}} = 1.775 \,\text{M}, W_{\text{panel}} = 1.098 \,\text{M}.$ 

 Межрядное расстояние: Расстояние между рядами (Drow) для минимизации затенения:

$$D_{\text{row}} = \frac{L_{\text{panel}} \cdot \sin(\theta)}{\tan(\max(5^{\circ}, 90^{\circ} - \text{lat}))}$$

где lat — широта региона.

Коэффициент плотности: Доля полезной площади с учётом межрядного расстояния:

$$k_{\text{spacing}} = \frac{A_{\text{panel}}}{A_{\text{panel}} + D_{\text{row}} \cdot W_{\text{panel}}}$$

4. Полезная площадь: Полезная площадь крыши (A<sub>usable</sub>):

$$A_{\text{usable}} = A_{\text{roof}} \cdot k_{\text{usable}} \cdot k_{\text{spacing}}$$

где  $k_{\text{usable}} = 0.85$ .

5. Количество панелей: Целое число панелей ( $N_{\rm panels}$ ):

$$N_{\text{panels}} = \lfloor A_{\text{usable}} / A_{\text{panel}} \rfloor$$

6. Установленная мощность: Общая мощность (Ptotal):

$$P_{\text{total}} = N_{\text{panels}} \cdot P_{\text{panel}}$$

где  $P_{\mathrm{panel}} = 0.4\,\mathrm{KBT}$ .

7. Годовая генерация: Годовая выработка энергии ( $E_{
m annual}$ ):

$$E_{annual} = P_{total} \cdot PVOUT \cdot k_{orient} \cdot k_{shading}$$

где PVOUT — удельная генерация (кВт·ч/кВт·год),  $k_{\rm shading}=0.95$ .





#### 5. Экономические расчёты

- 1. Классификация зданий: Здания классифицируются как коммерческие, если  $A_{\rm roof} > 1000\,{\rm M}^2$ , иначе жилые.
- 2. **Тариф**: Эффективный тариф ( $T_{\text{eff}}$ ):

3. Стоимость установки: Стоимость (C<sub>install</sub>):

$$C_{install} = P_{total} \cdot C_{panel} \cdot k_{install}$$

где  $C_{\text{panel}} = 820 \text{ USD/кВт, } k_{\text{install}} = 1.2.$ 

4. Годовая выручка: Выручка (Rannual):

$$R_{\text{annual}} = E_{\text{annual}} \cdot T_{\text{eff}}$$

5. Эксплуатационные расходы: Годовые расходы ( $C_{\rm om}$ ):

$$C_{\text{om}} = P_{\text{total}} \cdot 18 \text{ USD/kBT}$$

6. Годовая прибыль: Прибыль (П<sub>аппиа</sub>):

$$\Pi_{\text{annual}} = R_{\text{annual}} - C_{\text{om}}$$

7. Срок окупаемости: Простой срок окупаемости (ROI):

$$extbf{ROI} = egin{cases} rac{C_{ ext{install}}}{\Pi_{ ext{annual}}}, & ext{ec.} \Pi_{ ext{annual}} > 0 \ \infty, & ext{uhave} \end{cases}$$

8. Чистая приведённая стоимость: NPV с учётом ставки дисконтирования (r=0.11) и срока проекта  $(T=25\,\mathrm{лет})$ :

$$\text{NPV} = \Pi_{\text{annual}} \cdot \frac{1 - (1 + r)^{-T}}{r} - C_{\text{install}}$$

9. Уровень затрат (LCOE): Базовый LCOE:

$$\label{eq:lcoe} \text{LCOE}_{\text{base}} = \begin{cases} \frac{C_{\text{install}} \cdot r / \left(1 - (1 + r)^{-T}\right) + C_{\text{om}}}{E_{\text{annual}}}, & \text{если } E_{\text{annual}} > 0 \\ \infty, & \text{иначе} \end{cases}$$







